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What is a synthetic control?
A strategy for estimating causal treatment effects



What is a synthetic control?
A strategy for estimating causal treatment effects

Time series outcomes for a treated unit

Time series outcomes for a number of untreated units (i.e., 
the donor pool)



What is a synthetic control?
A weighted average of the untreated series is used as 
a counterfactual estimate of the treated series

As if treatment had not occurred



Consider this 
target series

and these 
untreated series



Some treatment 
occurs Never treated



Think of it as matching
Synthetic controls tries to match a target series to 
untreated donor series based on the unobserved 
factors that determine the data generating 
process before a treatment occurs.



Think of it as matching

Every time series has it’s own 
data generating process

𝑦!" = 𝛿"𝛼! + 𝜖!"

𝑦!": outcome
𝛿": common factor
𝛼!: unit-specific coefficient on 𝛿"
𝜖!": error
Observed Unobserved
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Think of it as matching
Data generating process

𝑦"∗ = 𝛿"𝛼! + 𝜖!"
𝑦!" = 𝛿"𝛼! + 𝜖!"

Ideally you could match on the unit-specific 
coefficients: 𝛼!

but these are unobserved.

Instead, we match 𝑦"∗ on observed outcomes to 𝑦!"
In the limit, a good match on 𝑦!" will be matching on 𝛼!



The “match” is a weighted 
combination of the donor pool

𝑦!∗ =#
#$%

&

𝑦#! 𝜋#

Weights are determined using pre-treatment data 
and are held fixed over the whole time period



The “match” is a weighted 
combination of the donor pool

𝑦!∗ =#
#$%

&

𝑦#! 𝜋#

How these weights are determined differs by the synthetic 
control method.

Can be zero. 
Can be negative. 
Need not sum to one.



Is there a combination of 
donor units that is a good 
match for the treated unit 
during the pre-treatment 
period?



Is there a combination of ] 
donor units that is a good 
match for the treated unit 
during the pre-treatment 
period?
Yes!



The “match” is a weighted 
combination of the donor pool

• Each of the 𝑁 donors
receives weight 𝜋!
• The synthetic control for 

the target series in time 
period 𝑡 is

𝑦!∗ =#
#$%

&

𝑦#! 𝜋#



The “match” is a weighted 
combination of the donor pool

• Each of the 𝑁 donors
receives weight 𝜋!
• The synthetic control for 

the target series in time 
period 𝑡 is

𝑦!∗ =#
#$%

&

𝑦#! 𝜋#

X 0.4

X 0.6



Now use these donors to form a 
prediction of the treated unit

𝑦(∗ =#
*+,

-

𝑦*( 𝜋*

𝑦(∗ = %𝑦𝑡

X 0.4

X 0.6



And extend the prediction into the 
post-treatment period

𝑦(∗ =#
*+,

-

𝑦*( 𝜋*

𝑦(∗ = %𝑦𝑡



And extend the prediction into the 
post-treatment period

• A counterfactual 
estimate as if treatment 
had not occurred.



Now compare 
the 
counterfactual 
estimate to the 
treated series. 



The difference 
between the 
counterfactual 
estimate and 
the treated 
series is our 
treatment 
effect estimate



Identification Assumptions



1. Conditional Independence
Once you conditional on 𝛼#, treatment is as good 
as randomly assigned. 

Same motivating assumption underlying 
propensity score matching and regression  



1. Conditional Independence
Omitted variable bias is a violation of this 
assumption

Occurs when treated series is generated from 
different time-varying factors than the donor-
series

𝑦!∗ = 𝛿!𝛼# + 𝜃!𝜎# + 𝜖#!
𝑦#! = 𝛿!𝛼# + 𝜖#!



1. Conditional Independence 
Most plausible in settings where the donor pool 
consists of outcomes that likely respond to a 
similar collection of time-varying common factors 

Raises concerns of overfitting
Do not want to match on idiosyncratic error
More of an issue in short-panels



2. Structural Stability
AssumpGon that the data generaGng process for
the untreated outcomes is the same in the
pre−period and the post−period



2. Structural Stability
You assume that 𝑦#! = 𝛿!𝛼# + 𝜖#! for all t

Your match and therefore post-period prediction 
will no longer be valid if 

𝑦#! = 𝛿!𝛼#×1 𝑡 ≤ 𝑇$ + 𝛿!Α%×1 𝑡 > 𝑇$ + 𝜖#!



3. No Dormant Factors
𝛿 must independently vary during pre-period 

If some elements of 𝛿 are dormant (i.e., perfectly 
collinear/no variance) during the pre-period, then 
match on outcomes does not imply perfect match 
on 𝛼#



3. No Dormant factors
Low frequency events

• Presidential election in the pre-period
• Seasonality 

The pre-treatment period may not be long enough to 
capture the α for a low-frequency event

Especially problematic if the post-treatment period 
includes such events



You do not want factors that 
“wake up”
• One concern is that some units may adopt new 

policies or experience novel/unique economic 
or social events. 
• Either through a new 𝛿
• or a change in 𝛼



Practical considerations
1. Use only donor and placebo units that seem to plausibly 

depend on the same collection of common factors 
This need not include variables of the same type

Lots of different variables may be informative about the underlying data 
generating process of the treated unit. 

2. Use cross-validation to determine synthetic control 
groups

Reduce likelihood of fitting on error (i.e., overfitting)



Practical considerations
3. Use only donors and placebos where no 

known violations of the dormant factors have 
occurred 

No policy or other changes to the data generating process

Be on the lookout for events that occur in the post-treatment 
period that do not have much precedent in the pre-treatment 
data. 



Practical considerations
4. Use a longer pre-treatment time period when 

possible
Trade-off between dormant factor and structural stability

Both length and frequency of dataset which help mitigate 
dormant factors

But going back too far may result in an entirely different data 
generating process.  



Practical considerations
5. Show that the pre-treatment difference 

between the synthetic control estimator and 
the target variable is small and centered around 
zero

Use a unit-free measure of fit to determine “what is 
small”



Applied Example



How does marijuana legalization 
affect the sale of alcohol and over-
the-counter pain medication?



Recreational Marijuana in 
Colorado

• Possession Legal
• One month following the vote (December 2012)
• Grow marijuana for personal use.
• Decriminalized for possession of Marijuana from 

a homegrown source.
• Transactions Legal

• January 2014
• Licensed stores can legally sell Marijuana for 

personal recreational use.



Data
Retail scanner database that provides store by week 
level information on the sales of a large set of 
products

Build comparison groups using a synthetic control 
estimator

combines information from weekly data on the sale of a 
basket of goods from states where marijuana is not legal

Traditional SCM will not work.





Synthetic Control Using Lasso 
SCUL



What is SCUL?
Using only pre-period data. 

Choose weights to satisfy:  
𝑎𝑟𝑔𝑚𝑖𝑛'

1
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The first term is just regular OLS.



What is SCUL?
𝑎𝑟𝑔𝑚𝑖𝑛!
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The second term is the Lasso penalty function.
𝜆 is a parameter that controls the penalty.

When 𝜆 = 0 you have OLS.
When 𝜆 > 0 you shrink the coefficients towards zero 
and sometimes you set some coefficients to zero. 
(Sparsity)



Why penalized OLS?
• Sparsity 

• OLS may overfit data à poor out-of-sample forecasts
• Fewer coefficients à Interpretable

• Allows for more donors than observations

• Allows for the same model selection procedure and thought to be 
put into placebo analyses as was done in target analyses (removes 
researcher degrees of freedom)

• Allows for negative and non-convex weights



Choose weights using cross-
validation

𝜆 is a parameter that controls the penalty à controls 
weights

𝜆 can be so large that no donors survive. 
𝜆 can be so small that the model is the same as OLS
For each unique 𝜆 weights are different

Choose 𝜆 using cross-validation to avoid over-fitting. Use 
rolling-origin cross-validation to avoid autocorrelation from 
creeping in.the pre-period.



SCUL chooses 𝜆 using rolling-origin 
cross-validation

Avoids over-fitting and autocorrelation issues in the 
pre-period.



SCUL chooses 𝜆 using rolling-origin 
cross-validation

We choose the median 𝜆 across all C.V.



What is the convex hull?
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Target series

Optimal donor series 
 with weight = 1
 and intercept = 4

−5

0

5

−50 −25 0 25 50
Time since treatment

Va
lu

e

Case 1: No convex combination of the donor pool can equal
 the target time series

A

Target series

Optimal donor series
 with weight = −1
 and intercept = 0

−5

0

5

−50 −25 0 25 50
Time since treatment

Va
lu

e

Case 2: The best donor series for this time series is
 countercyclical and would need a weight of −1

B

SCUL prediction
 (dashed−line)

Target series

SCM Prediction

Convex Hull of
 Donor Pool

−5

0

5

−50 −25 0 25 50
Time since treatment

Va
lu

e

Case 1: Traditional SCM is bound by convex hull and
 cannot use an intercept to select the optimal donor series

C

SCUL prediction
 (dashed−line) Target series

SCM Prediction

Convex Hull of
 Donor Pool

−5

0

5

−50 −25 0 25 50
Time since treatment

Va
lu

e

Case 2: Traditional SCM cannot give −1 weight to
 optimal donor series

D



What do synthetic control 
weights mean?



Interpreting weights
• Typical synthetic control weights only report 

the fraction of the total weight that is given to a 
particular donor series; 
• they do not reflect the size and variability of the 

outcome for each unit across time periods.
• 𝑦!∗ = ∑#&'( 𝑦#! 𝜋#



Interpreting weights
• Suppose, for example that

• there are two donor series, A and B, 
• A = 10 and B = 1

• each unit receives a weight equal to 0.5

• The synthetic prediction is 5.5 it is
• Y* = 0.5*A+ 0.5*B
• Y* = 5.5

• Despite being the same weight, 91% of the prediction 
came from A because of the large nominal value



Practical advice
• Report the weight from the model AND the 

share of the contribution to the prediction



How do I know if I have a good 
synthetic control?
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Cohen’s D
Average pre-treatment fit in standard deviation units

where

Adequate fit is < 0.25



Practical advice
Eliminate any donor or target series that has poor fit 
based upon pre-determined, unit-free threshold
• Using fit for the target series as the ”maximum 

threshold” biases the target series to be an outlier
• When rank based p-values are used this attenuates p-

values

• Using RMSE penalizes donors with large nominal 
variance



How should I think about 
statistical inference and power in 
synthetic controls?



Placebo-analyses
• Make a rank-based, two-sided p-value using 

randomization inference
• Compare the absolute value of the standardized 

treatment estimate to the absolute value of the 
standardized estimate from a number of
placebo series



Placebo-analyses
• The estimates from the placebo distribution 

serve as the null distribution that assumes no 
treatment effect.



Practical Advice
• Be sure to apply the same selection rules to 

your placebo pool as you did the treatment 
series 
• Compare based on unit-free measure of fit. 
• We use post-treatment Cohens’ D 



Placebo-analysis inform you of 
deteriorating model fitRejection region

 for null hypothesis
 of no treatment effect

Rejection region
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 of no treatment effect
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Practical advice
Report the minimum 
rejection value for your 
desired significance level. 

Perhaps your placebo 
distribution is so wide, you 
can only reject outrageous 
values. 



Results



Hard liquor



Treatment: Post-2012



Treatment: Post-2014



How do I do this?







Thank you!
Paper: https://doi.org/10.31235/osf.io/fc9xt
R-package: https://hollina.github.io/scul/
Artwork by Amy Jiao: http://www.amyjiaotattoo.com

Twitter: 
@ajhollingsworth
@coady_wing

Web: https://alexjhollingsworth.com
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