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Abstract 
This paper examines the impact of ill health on labor supply, addressing a key challenge in 
economic research: the misreporting of self-assessed health status. To overcome limitations in 
prior empirical methods for handling misclassified health, we propose a new approach that 
identifies the true effect of ill health using observations less likely to be misreported. Rather than 
assuming fixed misclassification rates, we develop a semi-parametrically estimated health index 
that extracts more accurate health information from available data. By leveraging this health index 
to inform misreporting probabilities, we employ a weighted IV estimator and optimize the 
weighting scheme to balance the tradeoff between squared bias and variance. We demonstrate the 
superior performance of our model via both simulations and real-world data. Using data from the 
2012 Health and Retirement Study (HRS), our findings indeed suggest that conventional methods, 
including OLS and standard IV techniques, significantly underestimate the negative impact of ill 
health on labor supply. Our approach reveals a much larger reduction in labor market participation 
due to ill health, highlighting the economic vulnerability of individuals with health limitations. 
These findings have important policy implications for designing social safety nets and employment 
policies to better support workers facing health challenges. 
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1. Introduction 

Building on the seminal work of Grossman (1972), health has been regarded as a component of 

human capital that plays a crucial role in shaping an individual's labor market behavior. Extensive 

evidence highlights the impact of poor health status, including increased days lost to illness, 

reduced productivity, and changes in the marginal rate of substitution between goods and leisure 

(Bubonya et al., 2017; Gustman and Steinmeier, 1986; Stansfeld et al., 1995; Zhang et al., 2015). 

With the adoption of various health, labor force, and social support policies (e.g., paid family and 

medical leave laws), the relationship between health and labor market dynamics has received 

growing attention, particularly in light of the COVID-19 pandemic, which introduced 

unprecedented complexities and challenges. For instance, Sheiner and Salwati (2022) point out the 

severity of a recent surge in disability during the pandemic, estimating that 1.5 million more 

Americans had a disability between January and September 2022 compared to January 2020. This 

public health crisis has the potential to significantly alter the labor market dynamics, particularly 

on the demand side, and will likely place financial strain on the Social Security benefits system as 

well as related public assistance programs. As such, accurately evaluating the labor supply effects 

of ill health is crucial for assessing individuals' economic circumstances and aiding policymakers 

in designing health-related policies to support particularly vulnerable groups. 

Among the challenges in studying the labor supply effects of ill health is the measurement 

error in health variables (e.g., disability). Health economists desire a “perfect” health variable that 

accurately measures the true health status and at the same time, captures the components of health 

that are determinants of work capacity. But such a “perfect” health variable is rarely available in 

real world data given the substantially varied definitions of health from individual to individual 

(or from survey to survey) and the pervasive imperfect information among the population on own 



health status (Bound, 1991; Bound et al. 1999; Gosling and Saloniki, 2014; Liu and Millimet, 

2020). In this context, subjective, self-assessed health measures serve as a comprehensive 

substitute for true health and are therefore widely used in empirical studies, since they have been 

found to be more correlated with work capacity than other health measures (Blau and Gilleskie, 

2001).  While such subjective health measures provide information on true health, they are subject 

to measurement error in a wide range of survey data. Butler et al. (1987) find sizable disparities 

between the reported arthritis symptoms and the recorded arthritis diagnoses. Brachet (2008) also 

notes substantial misreporting of maternal smoking status that is reported by respondents 

themselves in survey data. In line with their findings, the analysis of the 2012 wave of the Health 

and Retirement Study (HRS) in this paper likewise suggests the existence of enormous 

inconsistencies between two subjective health measures, the measure of work-limiting health 

problems and the measure of self-reported health status, which probably implies measurement 

errors in subjective health variables. Failure to address the measurement error of health variables 

may lead to biased estimation and misleading recommendations for economic policy. 

It is noteworthy that the measurement error of many health variables is non-classical because 

these health variables are recorded as discrete in survey data. For example, in the binary case, if 

an individual truly has good health, the measurement error occurs only when he reports poor health, 

and vice versa. Such measurement error in binary health variables, which is typically referred to 

as misclassification, will be by its nature negatively correlated with the unobserved true health 

(Aigner, 1973), creating an econometric issue distinct from the classical measurement error. To 

address it, some previous studies use a series of objective health measures, like functional 

limitations or doctors' diagnoses, to instrument for misclassified, subjective health measures. This 

approach ignores the possible inherent correlation between the instruments and the measurement 



error, rendering conventional IV estimators biased. Another approach widely used in the literature 

is to estimate a health index from objective health measures and then substitute this continuous 

index for the subjective health variable in the labor supply equation, but this approach introduces 

interpretation and functional form challenges in practice. 

This study confronts aforementioned challenges that have not been fully addressed in 

previous research and proposes a new method to handle the misclassified subjective health 

regressor in the labor supply equation. Under a greatly relaxed assumption on misclassification 

rates that are allowed to vary depending on a health index as a linear combination of demographic 

characteristics and objective health measures, this paper estimates the health index semi-

parametrically without imposing any restrictions on the parametric modeling of reported health or 

misclassification process. Rather than directly substituting this index for subjective health 

regressors in the labor supply equation, this paper employs it to discern observations in the sample 

that are free of misclassification. A high probability set is utilized to capture these correctly 

reported observations. With an estimated high probability set, an IV estimator is proposed to 

estimate the labor supply effect of ill health by assigning positive weights to observations in the 

high probability set and zero weights to observations outside the set. This paper optimizes the 

estimation of the high probability set by balancing the tradeoff between squared bias and variance 

of the proposed estimator. The results of Monte Carlo simulations suggest that the proposed IV 

estimator on the high probability set substantially reduces misclassification biases and root-mean-

square errors compared to OLS and conventional IV estimators. Further, the proposed estimator is 

robust to severe and asymmetric misclassifications, whereas OLS and conventional IV estimators 

increasingly underestimate the coefficient as misclassification rates rise. 



Using the 2012 wave of the Health and Retirement Study (HRS), this paper examines the 

labor supply effects of ill health for men and women aged 45-61. When examining the measure of 

self-reported health status, the results suggest that women will reduce labor supply by 1,900 hours 

per year when they rate their health as “Fair” or “Poor” and that OLS and traditional IV estimators 

demonstrate considerable attenuation biases compared to the proposed estimator. When examining 

the measure of work-limiting health, the results suggest that the traditional IV strategy and the 

proposed technique produce similar estimates, while the OLS estimate is biased towards zero. 

Beyond this study, the proposed weighted IV estimator can be broadly applied to point 

identification and estimation in treatment models with misclassification across economic and 

social science studies. For example, evaluating the efficacy and safety of a newly developed 

medication may require addressing the challenge that patients do not take the medication as 

prescribed. Patients’ out-of-pocket expenditures on the medication or their health insurance 

coverage may serve as instruments for implementing the weighted IV approach. In the field of 

marketing, firms seek to collect clients’ feedback (e.g., customer satisfaction), but clients’ true 

attitudes are often misclassified, leading to misleading business decisions. Identifying clients who 

genuinely provide feedback will help firms capture accurate market signals from the demand side 

and develop strategic plans accordingly. In the domain of political science, voting and election 

surveys often suffer from misclassification in pre-election polling. This study enables the 

distinction between individuals who accurately report their political affiliation and those who do 

not, making it feasible to investigate the relationship between political affiliation and relevant 

outcomes. 

The paper is organized as follows: Section 2 reviews the relevant literature; Section 3 

explains the methodology and its theoretical foundation; Section 4 presents the Monte Carlo 



simulation results; Section 5 describes the data and provides descriptive statistics of the sample; 

Section 6 discusses the estimation results; and Section 7 draws conclusions. 

 

2. Literature Review 

The effect of ill health on labor supply has been extensively studied for decades (Bound et al., 

1999; Chirikos and Nestel, 1985; Disney et al., 2006; Garc𝚤́a-G𝑜́mez et al., 2010; Gosling and 

Saloniki, 2014; Leroux et al., 2012; Mitchell and Burkhauser, 1990). Currie and Madrian (1999) 

gives a thorough review of literature, pointing out that most studies draw the same conclusion of 

the negative effect of health problems on labor supply, but that there is no consensus on its 

magnitude due to differing health measures and identification methods used. 

As generally recognized in the literature, health is defined differently across various 

measures in survey data, and the estimated effect of health on labor market outcomes is very 

sensitive to which measure of health is used. Self-assessed subjective health measures are widely 

used in studying labor market activities because they are found to be more correlated with work 

capacity than objective measures. Blau and Gilleskie (2001) find that when including multiple 

health measures in labor supply equations, subjective measures that describe the comprehensive 

health status usually have a larger explanatory power than objective indicators that report only 

some narrow, concrete dimension of health. While subjective health variables have such major 

advantages, their subjectivity introduces measurement error in various manners. Individuals with 

the identical underlying health may have different thresholds to report poor health (Baker et al., 

2004). Moreover, a majority of empirical studies suggest that the measurement error in subjective 

health variables is not random. In particular, individuals who supply less time to or exit the labor 

market, are more likely to report worse health to justify their economic inactivity in the labor 



market (Bound et al. 1999). Such a justification motivation can be heightened especially by 

financial incentives. Maestas et al. (2021) find that unemployment due to the Great Recession 

promotes the application for Social Security disability benefits, which provide applicants with 

financial incentives to report more severe conditions to meet the eligibility criteria. Whether 

random or not, measurement error may bias the estimated relationship between ill health and labor 

supply. 

To address measurement error in health variables, Stern (1989) proposes using objective 

measures to instrument for subjective measures. Since then, this method has become one of the 

predominant strategies widely used in empirical studies. The objective health measures commonly 

used in such studies include functional limitations, doctors’ diagnoses, or mortality rate, which 

only imperfectly reflects the true health. Advantageously, they are argued to be less subject to 

measurement error, as each objective health measure rates a narrow dimension of health with a 

relatively concrete “yes or no” threshold. Also, the questionnaire wording regarding such objective 

measures is less likely to motivate respondents to rationalize their labor force withdrawal by 

misreporting their health. See Charles (1999) for an empirical example. 

However, there are two potential flaws when using relatively objective measures to 

instrument for subjective measures. First, because many subjective health variables are 

dichotomous, their measurement error is non-classical. In particular, the measurement error is 

negatively correlated with the unobserved true health indicator (Aigner, 1973), a phenomenon 

typically referred to as misclassification. Due to the inherent correlation between true health and 

measurement error, conventional IV techniques may fail to produce a consistent estimate. The 

validity of the conventional IV approach requires that the instruments be correlated with true health 

but uncorrelated with measurement error. However, the inherent correlation between true health 



and measurement error makes it difficult to ensure that these instruments remain uncorrelated with 

the measurement error. Further, testing the validity of instruments required by the conventional IV 

technique is hardly feasible, as true health and measurement error are unobserved, posing a 

significant challenge to justifying the conventional IV approach. Second, Bound (1991) 

demonstrates mathematically that measurement error in health measures distorts the estimated 

effects of other economic factors correlated with health, such as education. Even if the 

measurement error in health variables is addressed in some way, the estimated coefficients of these 

economic factors remain biased. 

Another approach to addressing measurement error is to recover the latent health status. 

Bound et al. (1999), Disney et al. (2006) and Garc𝚤́a-G𝑜́mez et al. (2010) construct an underlying 

health index from a number of objective health indicators and substitute this index or its variant 

for the subjective health variable when modeling labor market behavior. This method has been 

extended beyond the study of labor market outcomes, for example J𝑢̈rges (2007) examines the 

differences in self-reported health across countries by estimating the latent health index. While 

this method mitigates the estimation bias resulting from measurement error, the direct replacement 

of the discrete health measure with a continuous health index makes interpreting the results 

challenging and relies heavily on the parametric assumptions for modeling both health and 

measurement error. First, individuals who suffer from a slight decline in health, as indicated by 

the continuous index, are likely to remain economically active in the labor market. There is no 

clear way to determine the extent to which declines in the health index can be considered an illness 

that influences individuals’ labor market decisions. Second, when constructing the continuous 

health index using a number of objective health indicators, different researchers may have different 

knowledge and beliefs of which objective indicators are critical as determinants of true health. 



Once research omits an important objective indicator, the evaluation of health might lose a 

significant dimension. In addition, based on the different objective indicators included, it becomes 

difficult to make a comparison across studies. Third, estimation of the health index in prior studies 

assumes parametric modeling of health and specific distribution of measurement error, which 

introduces functional form challenges. 

To summarize the literature, the essence of these two predominant approaches is to extract 

reliable information on true health from relatively objective measures. While the first approach 

fully recognizes the discreteness of subjective health variables, it fails to handle the inherent non-

classical measurement error. Meanwhile, it tends to distort the estimated coefficients on other 

economic factors correlated with health, making it difficult to compare the relative impacts on 

labor market decisions of health and other economic factors, such as education. The second 

approach constructs a continuous health index to circumvent the issue of non-classical 

measurement error, but substituting this continuous health index for a misclassified, subjective 

health regressor introduces interpretation and functional form challenges in practice. 

This paper contributes to the literature in five important respects. First, it addresses the issues 

arising from ignoring the inherent non-classical nature of measurement error in health variables or 

replacing reported health regressors in the labor supply model with a constructed health index. 

Second, it relaxes the assumptions on the misclassification process. Specifically, the rate of 

misreporting health status is not assumed to be constant and can vary with demographic 

characteristics and objective health measures. Estimation under this relaxed assumption not only 

complements the existing misclassification literature but also significantly expands the 

methodological toolkit for relevant microeconomic analyses. Third, a latent index of true health is 

estimated semi-parametrically without imposing any functional form restrictions on the reported 



health model or distributional assumptions on the misclassification process. Fourth, rather than 

directly substituting the estimated health index for subjective health regressors in labor supply 

equations, as done in previous studies, this paper uses this index to identify observations that are 

free from misclassification. Fifth, it relies only on these correctly classified observations to 

estimate the labor supply effect of ill health. The selection of observations is data-driven, balancing 

the tradeoff between squared bias and variance in the proposed estimator. 

 

3. Methodology 

3.1. Model 

To study the labor supply effect of ill health, this paper uses the following structural model:1 

 𝑌! = 𝛼 + 𝑋!"𝛾 + 𝐻!∗𝛽 + 𝜀! (1) 

where 𝑌!  is the observation 𝑖’s hours of work, 𝐻!∗  measures true health status, and 𝑋! , a 𝑘 × 1 

random vector, includes all other exogenous covariates, for example age, square of age, race, 

education, marital status, and census division. The regression error 𝜀! has mean zero and variance 

𝜎$ . Observations are independent and identically distributed over 𝑖. The health measure 𝐻!∗ is 

dichotomous, equal to 1 for ill health and 0 for good health. Accordingly, the coefficient, 𝛽, reflects 

the effect of ill health on hours worked. 

 
1 The structural model is a cross-sectional regression that would be contaminated by the misclassification of the health 
regressor. While a regression model with panel data can offer advantages for causal inference, for example accounting 
for time-invariant unobserved heterogeneity, the development of its econometric theories remains limited, particularly 
in obtaining point estimates. This limitation likely arises from the complexity of addressing both misclassification and 
heterogeneity simultaneously. The challenge intensifies when misclassification rates are not constant and allowed to 
vary across individuals. The work of Denteh and K 𝑒́ dagni (2022) is within the very limited literature on 
misclassification in regression models with panel data, where they estimate bounds on treatment effects in the presence 
of a misclassified treatment regressor, rather than yielding point estimates. Our work in the present paper aims to point 
estimate the labor supply equation when misclassification rates of the health regressor (treatment) vary across 
individuals. 



However, the true health status, 𝐻!∗, is rarely observed in practice. Instead, self-assessed 

health measures are collected in most survey data through asking the respondents to rate their own 

health status. While these self-assessed health measures have been shown to be more likely than 

the objective health measures to reflect one's work capacity, they are more susceptible to 

measurement error. As virtually all the questionnaire wording in survey data requires the 

respondents to answer “Yes or No,” or at most to pick one from a few options that best describes 

their health status, these self-assessed health variables are binary or categorical. The measurement 

error of such health variables is distinct from that of continuous health measures. Here, we focus 

on the binary health measures that are subject to measurement error.2 In particular, if the true health 

is 0, it can be only misreported, if at all, to be 1 and if the true health is 1, it can be only misreported 

to be 0. Due to the special measurement error, conventional IV techniques may lead to biased 

estimates as discussed in the Literature Review section.  

Notwithstanding the issues associated with conventional IV techniques, the objective health 

measures do provide information on the unobserved true health. For example, if an individual 

reports limitation on many daily life functions and numerous medical conditions diagnosed by 

doctors, they are likely to have poor true health. If an individual reports very few limitations or no 

doctors' diagnoses, it is likely that their true health is good. Motivated by this idea, many previous 

studies agree that the unobserved true health depends on the objective health measures in some 

way. In accord with the literature, we use the threshold-crossing model of the true health as follows: 

 𝐻!∗ = 𝐼{𝑋!"𝜋% + 𝑍!𝜋$ > 𝜇!} (2) 

where 𝑋! includes all the covariates from the structural model (1) and 𝑍! is the objective health 

variable. The objective health variable is termed the excluded variable (like instruments) because 

 
2 See Hu (2008) for models with a misclassified explanatory variable, where the true explanatory variable and its 
surrogate are categorized into more than two values. 



it can affect the labor supply only through the subjective health measure and thus satisfy the 

exclusion restriction. The objective health, 𝑍! , can be a scalar or a vector. Only one excluded 

variable in (2) suffices to achieve identification and makes it convenient for elaboration. The 

estimation strategy proposed below remains valid when 𝑍!  captures more than one excluded 

variable. Moreover, the proposed strategy enables us to estimate the linear combination of 𝑋! and 

𝑍! semi-parametrically without requiring knowledge of the distribution of the error term 𝜇!. Such 

greater flexibility distinguishes this study from previous work that parametrically recovers a latent 

true health index by assuming specific distributions of 𝜇!. The estimation of the linear combination 

is discussed in more detail below. 

Different from previous research, this paper assumes non-constant misclassification 

probabilities. Mahajan (2006) is the first to recognize that assuming constant misclassification 

probabilities is a strong assumption 3  and thus relax it by allowing these probabilities to be 

functions of covariates in the structural equation. Building on this, we assume that 

misclassification probabilities depend not only on the covariates 𝑋! in the structural equation but 

also on the objective health measure 𝑍!.  

To the best of our knowledge, this study is the first to estimate a labor supply equation in 

which the health variable is subject to misreporting and misclassification rates depend on both 

included demographic characteristics and excluded objective health measures. This further 

relaxation has a theoretical basis. As discussed in the Literature Review section, conventional IV 

estimation struggles to address the misclassified health regressor due to the lack of a guarantee 

that objective health measures are uncorrelated with measurement error. Given the potential 

 
3 For example, it is very strong to assume that individuals with different ages, education levels, or incomes have the 
same probability of misreporting their health status. 



correlation between measurement error and objective health measures (excluded variables), we 

extend the assumption by allowing misclassification probabilities to depend on both 𝑋! and 𝑍!. 

Moreover, this assumption also has practical implications. Individuals who have more functional 

limitations or medical conditions are far less likely to report themselves as healthy, while those 

with minimal limitations or no medical diagnoses are unlikely to report poor health. In short, 

individuals with either a very high or very low number of functional limitations and medical 

diagnoses have an extremely low probability of misreporting their health status. 

 

3.2. Health Index 

This study utilizes an estimated health index to extract information about true health from objective 

health measures and to identify observations that are less likely to be misreported. Unlike the 

composite health index commonly used in the literature, which heavily relies on researchers’ 

knowledge and assumptions about which variables should be included and how they should be 

aggregated, the health index in this paper is estimated within a regression model of subjective 

health variable under a relatively general assumption: true health and misclassification rates 

depend on demographic characteristics and objective health measures through this health index. 

More importantly, rather than directly substituting this health index for the misreported health 

variable in the labor supply equation, the goal of estimating the index is to identify observations 

that are less subject to misclassification. This approach eliminates interpretational challenges that 

arise from directly regressing on the health index. Additionally, leveraging the health index in this 

way arguably removes the influence of researchers’ subjective judgement in constructing the index. 

Below we discuss the semiparametric estimation of the health index. 

Normalize the linear combination in (2) to obtain an index 𝑉!: 



 𝑉! = 𝑋%! + 𝑋$!𝜑$& + 𝑋'!𝜑'& +⋯+ 𝑋(!𝜑(& + 𝑍!𝜃& (3) 

where 𝑋%! , ⋯ , 𝑋(! are the 𝑘 variables in the vector, 𝑋!. The distribution of 𝐻!∗ is assumed to depend 

on 𝑋! and 𝑍! through the index 𝑉! as follows: 

 𝑃!∗(𝑉!) = 𝑃𝑟(𝐻!∗ = 1|𝑉!) = 𝑃𝑟(𝑉!𝑏 > 𝜇!|𝑉!) (4) 

 𝑉!𝑏 = 𝑋!𝜋% + 𝑍!𝜋$ = (𝑋%! + 𝑋$!𝜑$& + 𝑋'!𝜑'& +⋯+ 𝑋(!𝜑(& + 𝑍!𝜃&)𝑏 (5) 

where 𝑃!∗ represents the probability of actually having ill health, conditioned on the index 𝑉!. Since 

the index 𝑉! contains many objective health indicators in practice, it is referred to as the health 

index. The misclassification rates are assumed to be functions of the health index:4 

 𝑃𝐿(𝑉!) = 𝑃𝑟(𝐻! = 1|𝐻!∗ = 0, 𝑉!) (6) 

 𝑃𝑅(𝑉!) = 𝑃𝑟(𝐻! = 0|𝐻!∗ = 1, 𝑉!) (7) 

where 𝐻! is the subjective, self-assessed health measure, taking the value 1 for ill health and 0 for 

good health. Individuals with extreme values of the health index (e.g., having either a very high or 

very low number of functional limitations and doctors' diagnoses) are less likely to misreport their 

health status. In other words, as the health index approaches extremely large or small values, the 

misclassification rates tend to zero, meaning no misclassification.  

By the Law of Total Probability, the self-assessed health is also a function of the index: 

 𝑃!(𝑉!) = I1 − 𝑃𝑅(𝑉!)K𝑃!∗(𝑉!) + 𝑃𝐿(𝑉!)(1 − 𝑃!∗(𝑉!)) (8) 

where 𝑃! is the probability of reporting ill health (𝐻! = 1) given the index 𝑉!.  

While the specific model for the observable 𝐻! is unknown, the parameters {𝜑)&})*$(  and 

𝜃& in the index are identified and estimated semi-parametrically in a single-index model.5 With 

 
4 With the misclassification functions being unknown, the normalized index 𝑉! can be recovered. For our purpose, 
identification of 𝑉! is sufficient. 
5 While the specific model of 𝐻! is unknown, it is feasible to estimate a binary response model of 𝐻! by maximizing 
the following quasi log-likelihood function: 



these index parameters, 𝑉!  and 𝑃!(𝑉!)  are consistently estimated. Their identification and 

estimation are particularly powerful, as no restrictions are imposed on the functional form 

governing how the index determines the probability of actually having ill health (𝑃!∗(𝑉!)), the 

misclassification process (𝑃𝐿(𝑉!) and 𝑃𝑅(𝑉!)), and the probability of reporting ill health (𝑃!(𝑉!)). 

 

3.3. High Probability Set 

To select observations with extreme values of the health index, we define a high probability set 

that contains observations with a high likelihood of having no misclassification, as follows: 

 {𝑉!: 𝑃!(𝑉!) < 𝑁+,	𝑜𝑟	𝑃!(𝑉!) > 1 − 𝑁+,}, 0 < 𝑎 < 1 (9) 

where 𝑁 is the sample size and 𝑎 is the high probability set parameter. In the high probability set, 

𝑃!  is assumed to be a monotonic function of the health index 𝑉! . Thus, as the sample size 𝑁 

increases, the set tends to select observations with extreme index values. The more extreme an 

index value is, the higher the probability the observation correctly reports its true health status, and 

therefore, a higher weight should be assigned to this observation in estimation. See Andrews and 

Schafgans (1998), Heckman (1990), and Klein et al. (2015) for seminal theoretical developments 

on achieving identification and estimation in sample selection models by leveraging extreme 

observations. The important parameter 𝑎 is not chosen arbitrarily. The determination of its optimal 

value will be discussed in detail below. 

 

𝐿({𝜑"}"#$% , 𝜃) ≡./𝐻! ln 2𝑃4! 5𝑉!({𝜑"}"#$% , 𝜃)67 + (1 − 𝐻!) ln 21 − 𝑃4! 5𝑉!({𝜑"}"#$% , 𝜃)67;
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where 𝑃4! is a kernel estimator of 𝑃! 
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where 𝐾 is a standard normal kernel with window ℎ = 𝑂(𝑁/.$). For the detailed establishment of semiparametric 
model estimation, see Klein and Spady (1993) and Ichimura (1993). 



The construction of the high probability set is inspired by Shen (2013), who examines health 

expenditures, which are only observed for patients who seek medical care services. To address 

sample selection issues in her empirical analysis, Shen proposes a similar high probability set to 

“trap” observations where the probability of seeking medical care is extremely close to 1. By using 

only these trapped observations, Shen consistently estimates the health expenditure model, as these 

observations do not suffer from selection bias. In a different context, this paper estimates the labor 

supply effect of ill health, also relying on the high probability set, as observations in this set do not 

suffer from misclassification. 

 

3.4. Estimator 

Without loss of generality, we propose the estimator for the following simplified model:6 

 𝑌! = 𝛼 + 𝐻!∗𝛽 + 𝜀! (10) 

Again, the coefficient 𝛽 reflects the effect of ill health on hours worked. The proposed estimator 

for the coefficient on health is 

 
𝛽Q =

∑ I𝑃S! − 𝑃TK𝑌!𝑆Q!-
!*%

∑ I𝑃S! − 𝑃TK𝐻!-
!*% 𝑆Q!

 
(11) 

where 𝑃S! is a kernel estimator of 𝑃! in a semiparametric model, as explained in footnote 5, 𝑆Q! is a 

weighting function that assigns positive weights to observations in the high probability set and 

zero weights to those outside the set. See Appendix B for its detailed definition. 𝑃T denotes the 

weighted average of 𝑃S! in the high probability set, given by: 

 
6 With the index 𝑉! recovered, we simplify the structural model (1) using the approach proposed by Robinson (1988) 
for partially linear models. The simplification separates the estimation of the coefficient on the health regressor from 
that on other economic covariates, overcoming the problems raised by Bound (1991) that the estimated coefficients 
on other covariates will be distorted by the mismeasured health regressor if these covariates are correlated with health. 
See Appendix A for detailed steps of simplification. 



 ∑ 𝑃S!𝑆Q!-
!*%

∑ 𝑆Q!-
!*%

 
(12) 

The estimator 𝛽Q  essentially represents an instrumental variable strategy applied to the high 

probability set.7  

For the unknown high probability set, estimating it and determining the appropriate 

weighting scheme presents a technical challenge. The high probability set parameter 𝑎, which is 

an argument in the weighting function 𝑆Q!, controls which observations are selected by the high 

probability set. If the selected index does not approach sufficiently large or sufficiently small 

values ( 𝑎 → 0 ), 8  the bias of the estimator will be substantial because many misreported 

observations are included. Conversely, if the index value is too extreme (𝑎 → 1),9 the bias will 

become negligible, but the variance will be significant due to having too few observations. 

Therefore, the optimal high probability set parameter, 𝑎, is determined by balancing the (squared) 

bias and variance in the proposed estimator. Key assumptions and results related to this balance 

will be discussed below.  

In practice, two high probability set parameters are used in this study, one for each tail. 

Specifically, the parameter 𝑎% selects observations with extremely small index values (left tail), 

while the parameter 𝑎$ selects observations with extremely large index values (right tail). The left 

 
7 For comparison, the traditional IV estimator can be seen as assigning equal weight to each observation in the sample. 
For example, for the model with only one regressor 

𝑌! = 𝛼 +𝐻!∗𝛽 + 𝜀! 
the traditional IV estimator is 

𝛽I =
∑ <𝑃4! − 𝑃J?𝑌!&
!#'

∑ <𝑃4! − 𝑃J?𝐻!&
!#'

 

where 𝑃4! is the kernel estimator of the instrument 𝑃!, and 𝑃J is the sample mean of 𝑃4!. 
8 With 𝑎 → 0, the high probability set approximates the following set, 

{𝑉!: 𝑃!(𝑉!) < 1	𝑜𝑟	𝑃!(𝑉!) > 0} 
which captures almost all the observations in the sample. 
9 With 𝑎 → 1, the high probability set approximates the following set, 

{𝑉!: 𝑃!(𝑉!) ≈ 0	𝑜𝑟	𝑃!(𝑉!) ≈ 1} 
which includes too extreme observations only. 



tail of the index may differ from the right tail in distribution, so two different parameters are needed 

to control the potential differences in the selection process from each tail. When the index is 

symmetrically distributed, these two parameters will be identical. 

 

3.5. Key Assumptions and Results 

To construct the high probability set and implement the proposed weighted IV technique, we make 

the following assumptions: 

Assumption 1 (Non-Differential Measurement Error).  

𝔼(𝑌!|𝐻!∗, 𝐻! , 𝑋! , 𝑍!) = 𝔼(𝑌!|𝐻!∗, 𝑋! , 𝑍!). (13) 

Assumption 1 is conventionally referred to as non-differential measurement error—a type 

of measurement error that provides no additional information about the outcome variable beyond 

what is given by the true health status and excluded variables. This assumption is standard and has 

been extensively utilized in the measurement error literature (Chen, et al., 2008; DiTraglia and 

Garcia-Jimeno, 2019; Kasahara and Shimotsu, 2022; Mahajan, 2006; Schennach, 2022). 

Assumption 2 (Misclassification Restriction at Infinity). 𝑃!(𝑉!) and 𝑃!∗(𝑉!) converge to 0 (1) at 

the same rate as 𝑉! → −∞	(𝑉! → +∞). 

Assumption 2 implies that the probabilities of actually having ill health and reporting ill 

health approach 0 or 1 at the same rate as the health index becomes sufficiently small or sufficiently 

large, respectively. A sufficient condition for this assumption is: 𝑃𝐿(𝑉!) converges to 0 as 𝑉! →

−∞ at a faster rate than 𝑃!(𝑉!) converges to 0, while 𝑃𝑅(𝑉!) converges to 0 as 𝑉! → +∞ at a faster 

rate than 𝑃!(𝑉!) converges to 1. Meanwhile, 1 − 𝑃𝐿(𝑉!) ↛ 1 as 𝑉! → +∞ and 1 − 𝑃𝑅(𝑉!) ↛ 1 as 

𝑉! → −∞ . To see the validity of this condition, check equation (8) when 𝑉! → −∞  and the 

following equation when 𝑉! → +∞: 



 1 − 𝑃!(𝑉!) = 𝑃𝑅(𝑉!)𝑃!∗(𝑉!) + (1 − 𝑃𝐿(𝑉!))(1 − 𝑃!∗(𝑉!)) (14) 

Assumption 2 implies that 𝑃𝐿(𝑉!) + 𝑃𝑅(𝑉!) < 1  for extreme values of the index. 

Interestingly, this restriction on misclassification aligns with “Assumption 2 – Restriction on the 

Extent of Misclassification” in Mahajan (2006, p.637), except that Mahajan imposes this condition 

on the entire real line ℝ rather than only at infinity. Similar assumptions have also been discussed 

in the misclassification literature (see Bollinger, 1996; DiTraglia and Garcia-Jimeno, 2019; Frazis 

and Loewenstein, 2003; van Hasselt and Bollinger, 2012) and in the influential review by Hu 

(2008). This restriction on misclassification ensures that the surrogate 𝐻! is positively correlated 

with the true health status 𝐻!∗. While the observed surrogate is contaminated by measurement error, 

it remains more informative than an arbitrary guess. 

Assumption 3 (Tail Conditions). In the distribution of 𝐻!∗ as illustrated in (4), let 𝐺.(. ) and 𝐹/(. ) 

denote the cumulative distribution functions of the index 𝑉! and the error 𝜇!, respectively. Assume 

for all 𝑡 < 𝑇 sufficiently small, 

 𝐺.(𝑡) > 𝐹/(𝑡) (15) 

and for all 𝑡 > 𝑇 sufficiently large, 

 1 − 𝐺.(𝑡) > 1 − 𝐹/(𝑡) (16) 

The tail conditions specified in Assumption 3 require that the tails of the index distribution 

are heavier than those of the error term 𝜇! in (2). This assumption provides a lower bound for the 

terms 𝔼(𝑆0!) and 𝔼(𝑆1!), contributing to the order analysis of the squared bias and variance. See 

below for a detailed order analysis. The concept of heavier tails in the index distribution has been 

explored by Andrews and Schafgans (1998) and Klein et al. (2015) to establish the large sample 

properties of their estimators. Intuitively, if the index distribution has excessively thin tails, it 



becomes difficult to select enough observations from the extreme ends, thereby weakening the 

implementation of the proposed weighting scheme. 

 

Result 1. Under Assumptions 2 and 3, 

 𝔼(𝑆0!) ≥ 𝑂(𝑁+,) (17) 

 𝔼(𝑆1!) ≥ 𝑂(𝑁+,) (18) 

 𝔼(𝑆0!$ ) ≥ 𝑂(𝑁+,) (19) 

 𝔼(𝑆1!$ ) ≥ 𝑂(𝑁+,) (20) 

Proof. See Appendix C. 

Result 2. Under Assumptions 1-3, 

 |𝐵𝑖𝑎𝑠| ≤ 𝑂(𝑁+,) (21) 

 
𝑉𝑎𝑟I𝛽QK =

𝔼 e𝑆f𝑉S , 𝑥I𝑎, 𝑃SKh$i

𝑁 e𝔼 j𝑆 k𝑉S , 𝑥I𝑎, 𝑃SKlmi
$ +

𝔼 e𝑆f𝑉S, 𝑦I𝑎, 𝑃SKh$i

𝑁 e𝔼 j𝑆 k𝑉S, 𝑦I𝑎, 𝑃SKlmi
$ 

(22) 

Proof. See Appendix D. 

As shown in Result 2, the bias and variance of the proposed estimator depend on the high 

probability set parameter 𝑎. The optimal parameter 𝑎 is estimated to ensure that squared bias and 

variance converge to zero at the same rate. 

 

4. Monte Carlo Simulations  

We conduct Monte Carlo simulations to evaluate the performance of the proposed estimator in 

finite sample studies. The data are generated as follows: 

 𝑌! = 2 + 1.5𝑋%! + 3𝐻!∗ + 𝜀! (23) 

 𝐻!∗ = 𝐼{𝑉! > 𝜇!} (24) 



 𝑉! = 3𝑋%! + 4𝑋$! + 5𝑋'! (25) 

 𝐻! = 𝐻!∗𝐼{𝑈! > 𝑃𝑅!} + (1 − 𝐻!∗)𝐼{𝑈! < 𝑃𝐿!} (26) 

where 𝐻!∗  is a dichotomous variable representing the unobserved true health status, which 

determines the outcome of interest, 𝑌!. 𝐻!∗ depends on an index 𝑉! through a threshold-crossing 

model. The index 𝑉! is a linear combination of included and excluded variables, 𝑋%!, 𝑋$!, and 𝑋'!, 

which are drawn from a multivariate normal distribution: 

 𝑋" = [𝑋%! , 𝑋$! , 𝑋'!]" ∼ 𝑁(0, Σ) (27) 

where ∑  is a non-diagonal matrix that allows for correlations between any two exogenous 

variables in 𝑋 . The index is rescaled to have unity variance. The error terms are normally 

distributed as follows: 

 𝜀! ∼ 𝑁(0, 1) (28) 

 𝜇! ∼ 𝑁(𝜇̅, .25) (29) 

where the mean 𝜇̅ takes on various values, each corresponding to a specific simulation model. The 

tails of 𝜇! are thinner than those of the index 𝑉!, satisfying the tail conditions in Assumption 3. The 

random variable 𝑈! follows a standard uniform distribution. It generates random numbers such that 

when 𝐻!∗ = 1, its surrogate 𝐻!  is observed to be 0 with probability 𝑃𝑅! , and when 𝐻!∗ = 0, 𝐻! 

equals 1 with probability 𝑃𝐿!. The misclassification rates, 𝑃𝑅! and 𝑃𝐿!, are functions of the index 

𝑉!: 

 𝑃𝐿! = 𝛼0Φ(5𝑉!) (30) 

 𝑃𝑅! = 𝛼1[1 − Φ(5𝑉!)] (31) 

where Φ(⋅) is the standard normal cumulative distribution function. The constants 𝛼0  and 𝛼1 

control the degree of misreporting in the true health variable; larger values indicate more severe 

misclassification. 



We set the values of 𝜇̅, 𝛼0, and 𝛼1 in two scenarios: (1) 𝜇̅ takes the values 0, -1, -0.5, 0.5, 

or 1, while 𝛼0 = 𝛼1 = 0.9, and (2) with 𝜇̅ = 0, various values are assigned to 𝛼0 and 𝛼1 to model 

severe, moderate, and no symmetric misclassification as well as asymmetric misclassification. For 

each model, we run Monte Carlo simulations with 1,000 observations for 1,000 replications. In 

each replication, the coefficient on 𝐻!∗ in the outcome equation is estimated using the proposed 

technique. For comparison, we also estimate this coefficient using OLS and conventional IV 

regressions. We report the mean, standard deviation, and root-mean-square error (RMSE) of the 

estimates from 1,000 replications for OLS, conventional IV, and the proposed IV on HPS 

regressions separately. 

Table 1 presents the simulation results for five model setups in the first scenario, where  𝜇̅ 

takes values 0, -1, -0.5, 0.5, or 1, while 𝛼0 = 𝛼1 = 0.9. For each model setup, we report the mean, 

standard deviation, and RMSE based on 1,000 replications for OLS, conventional IV, and the 

proposed IV on HPS techniques. Additionally, for the IV estimator on HPS, we report the mean 

and standard deviation of the optimal high probability set parameter from 1,000 replications. 

Overall, the proposed IV estimator on HPS performs well, exhibiting significantly smaller RMSEs 

compared to OLS and conventional IV estimators. The OLS and conventional IV estimators tend 

to underestimate the coefficients on 𝐻∗, particularly in models where 𝜇̅ takes values of -1 or 1. For 

instance, when 𝜇̅ = 1, the OLS and conventional IV estimates account for only 37.8% and 44.9% 

of the true coefficient, respectively, leading to substantial biases. Moreover, the RMSEs for OLS 

and conventional IV estimators are 1.866 and 1.654, respectively, whereas the proposed IV 

estimator on HPS has an RMSE of 0.470, indicating that it converges in probability to the true 

coefficient at a much faster rate. Similar underestimation results are observed when 𝜇̅ = −1. Such 

underestimations align with the findings of Aigner (1973) and Bound (1991). In contrast, the IV 



estimator on HPS significantly reduces bias while only slightly increasing the standard deviation 

due to the use of a fraction of the sample. In addition, the method proposed in this paper 

successfully attains unbiased estimates of the coefficient on 𝑋% by employing the technique of 

Robinson (1998), as discussed in Appendix A, validating the separation between estimating 

coefficients on health regressor and other covariates. 

Table 2 presents the simulation results for the second scenario, where we examine severe, 

moderate, and no symmetric misclassification as well as asymmetric misclassification while 

keeping 𝜇̅ = 0. When no misclassification is present, OLS, conventional IV, and the proposed IV 

on HPS techniques produce nearly identical unbiased estimates. However, as misclassification 

severity increases, the proposed IV estimator on HPS demonstrates an obvious advantage over the 

other two estimators. It remains robust to misclassification severity, while OLS and conventional 

IV increasingly underestimate the coefficient as misclassification rates rise. Furthermore, the 

proposed IV estimator on HPS is also robust to asymmetric misclassification, featuring 

significantly reduced bias and much smaller RMSEs compared to the other two estimators. 

 

5. Data 

This study uses the 2012 wave of the Health and Retirement Study (HRS) to analyze the labor 

supply effect of one’s ill health. The Health and Retirement Study is a nationally representative 

survey of aging American households starting from 1992. It collects information on health status, 

employment history, wealth, income, social security, pension, and demographics for respondents 

and their spouses (if any). The data contain an abundant set of health measures, including self-

reported health status, self-reported work-limiting health problems, functional limitations, and 

doctors' diagnoses to name a few. Such a rich set of measures helps to assess various aspects of 



individuals' health status and makes it possible to implement the observation selection as illustrated 

in the Methodology section. Since the initial HRS cohort was first interviewed in 1992, new 

cohorts have been introduced subsequently in 1993, 1998, 2004, 2010, and 2016. Among the 

waves in the HRS, the 2012 wave is chosen with two considerations in mind: First, this study aims 

to analyze the labor supply decision of individuals aged 45-61 when they experience ill health. 

Given an increasing proportion of early cohorts go out of this specific age range with time, the use 

of a recent wave (2012) after a new cohort (2010 cohort) entered the survey guarantees enough 

observations in this age group and has meaningful implications that relate most to the current 

economy. Second, the Great Recession in 2007-2009 caused an elevated rate of unemployment, 

which peaked in 2010. Analysis of 2012 data helps understand people’s labor market behavior 

during recession recovery.  

This study focuses on respondents aged between 45 and 61 because at age 62 individuals are 

able to collect Social Security retirement benefits, which provide individuals with sizable financial 

incentives to leave the labor force, leading them to be more likely to change their labor market 

behavior when they experience health problems compared to those who have not reached this age 

threshold. Dobkin et al. (2018) and Li (2023) both disclose the role of formal insurance that Social 

Security retirement benefits have played in mitigating negative effects of health shocks on 

employment or earnings; the negative effects are found to be much insured by Social Security 

retirement income once individuals reach its age threshold. In addition, we exclude observations 

with missing data on labor supply, health measures, age, race, education, income, marital status, 

and census division. As a result, there are 2,995 men and 4,089 women in the sample. 

Table 3 defines the variables used in this study. The measure of labor supply is an 

individual's hours worked per year. The HRS contains the number of hours per week and the 



number of weeks per year a respondent devotes to his or her main job and second job. For each 

job, we calculate the hours worked as a product of the number of hours per week and the number 

of weeks per year. The total hours worked are a sum of the hours of work from one's main and 

second jobs. Those who are described as not working for pay are designated having zero hours of 

work. There are two self-assessed health measures used, work-limiting health problem and self-

reported health status.10 Their respective effects on labor supply will be examined individually. 

The excluded variables include the number of functional limitations and seven indicators of 

doctors’ diagnoses. Since ill health may affect the hours worked of men and women differently, 

we examine the labor supply effect for the genders separately. 

Table 4 presents descriptive statistics for men and women, respectively. Panel A reports 

their basic demographics. The average ages of men and women are both about 56, and a majority 

of men and women are 51 years and older. There is no substantial gender difference in the 

distribution of educational attainment. To account for the effect of other income sources that are 

unrelated to labor earnings, we calculate the non-labor income by subtracting individuals' own 

labor income from their total household income. On average, females have 4,600 dollars more of 

nonlabor income than males. There are more single women than single men in this sample, with 

22.1 percent of women being divorced or widowed and 8.0 percent never married, compared to 

only 13.3 percent of divorced or widowed men and 7.8 percent of never married men. 

Panel B presents the labor market behavior for the genders. Males have a stronger attachment 

to the labor market than females. They have a higher labor force participation rate (70.8%) than 

females (62.4%) and supply more hours of work. Conditional on working for pay, 15.8 percent of 

 
10 Respondents are required to categorize their general health status as “Excellent,” “Very Good,” “Good,” “Fair” and 
“Poor.” Since different individuals may apply different definitions to “Excellent,” “Very Good” and “Good,” it is 
more common to translate this into a binary variable. In this paper we divide these five categories into two groups: 1 
for “Fair” or “Poor” health and 0 for “Excellent,” “Very Good,” or “Good” health. 



men also work on a second job, compared to only 13.4 percent of women. In addition, male 

workers devote more hours per year than female workers not only to their main job but also to the 

second job. 

Panel C shows the men's and women's reports on their health status. Twenty-five percent of 

men report a health problem that limits their work. At the same time, there is a similar share (24.3%) 

of men reporting “Fair” or “Poor” health measured by self-reported health status. The proportions 

of women in unhealthy status measured by these two variables appear very close to each other, 

26.9 percent for work-limiting health problems versus 27.7 percent for self-reported health status. 

But it is noteworthy that the group who reports work-limiting health problems is quite different 

from the group who reports “Fair” or “Poor” in self-reported health measure. Table 5 illustrates 

the reported discrepancy between these two health measures by gender. Among the 738 male 

respondents with a health problem that limits their work, only 424 (57.5%) report “Fair” or “Poor” 

health, while in the group with “Fair” or “Poor” health (727) there are 303 individuals (41.7%) 

reporting no work-limiting problems. The female sample also demonstrates a similar large 

reporting inconsistency between these two health measures. Such substantial measurement 

discrepancies add evidence that different self-assessed measures of health may evaluate different 

dimensions of the true health and thus introduce considerable misclassification when serving as a 

surrogate of the unobserved true health status in the labor supply equation.  

To instrument for the subjective health measures, we include the number of functional 

limitations11 and several doctors' diagnoses. On average, males have 1.7 types of limitations on 

daily life functions and females have 2.3. Forty-eight percent of men and sixty percent of women 

report at least one type of limitation. Almost half of the sample suffers from high blood pressure 

 
11 To increase the variation of the estimated health index, we use the number of functional limitations instead of a set 
of indicators for those limitations. 



and more than 19 percent from diabetes, indicating the high prevalence of chronic conditions 

among the aging population. Females are 10 percentage points more likely to experience 

psychological disorders than males, which aligns with the literature on gender difference in mental 

health (McManus et al., 2016). 

 

6. Results 

Table 6 and Table 7 present estimation results for men and women aged 45-61, respectively, when 

the self-reported health status is examined. We apply the instrumental strategy on the high 

probability set (termed IV on HPS hereafter) explained in the Methodology section to estimate the 

labor supply effect of ill health. As a comparison, we provide the OLS and IV estimates.12 When 

a man rates his health as “Fair” or “Poor,” he will work 2,027 fewer hours per year than his 

counterparts who rate their health as “Good,” “Very Good,” or “Excellent.” While the traditional 

IV estimation produces results that are not very far from the IV estimation on HPS, the OLS 

estimator demonstrates a substantial attenuation bias compared to the IV estimator based on high 

probability set; a man will reduce his labor supply by only 734 hours per year if his health is “Fair” 

or “Poor.” In the estimation for women, not only the OLS estimator but also the traditional IV 

estimator demonstrate attenuation biases compared to the proposed IV estimator based on the high 

probability set. The IV estimate on HPS suggests that “Fair” or “Poor” health reduces women's 

labor supply by 1,900 hours per year. As a comparison, the results of the other two estimates 

suggest that the working time devoted by women reduces by 615 hours in the OLS estimation and 

1,577 hours in the traditional IV estimation. 

 
12 We employ an optimal instrumental variable strategy. The predicted expectation of the subjective health indicator 
conditional on the health index is used as an optimal instrument for the subjective health regressor. See Newey (1990) 
for optimal instrumental variables. 



Both men and women greatly reduce their labor supply in the face of health declines. In 

particular, the genders with “Fair” or “Poor” health work about 2,000 fewer hours per year than 

those who rate their health as “Excellent,” “Very Good,” or “Good.” It may reflect a change in the 

extensive margin of labor supply. Given the average annual hours worked of 2,144 for men and 

1,844 for women who are working for pay as exhibited in Table 4, the estimated reduction of 

about 2,000 in yearly working hours may indicate a high likelihood of exiting the labor market 

when experiencing health problems. It provides supporting evidence of people’s withdrawal from 

the labor force due to their health declines that has been documented in the literature (Bound et al., 

1999; Disney et al., 2006; Garc𝚤́a-G𝑜́mez et al., 2010). Meanwhile, it could also be driven by the 

change in the intensive margin of labor supply. When analyzing the sample distribution of men’s 

and women’s yearly hours worked, we surprisingly find that there are a sizable number of 

respondents working more than 2,000 hours per year, even up to 3,000 hours per year. The greatly 

reduced working hours may also result from those hard workers who previously worked more 

hours than average workers when they were having good health and then switched to working less 

following their health deteriorations.  

Table 8 and Table 9 present the estimation results for men and women, respectively, when 

the work-limiting health is used. The IV estimate on HPS suggests that a man will reduce his labor 

supply by 1,659 hours per year when he suffers from a work-related limitation in health. The 

traditional IV estimation produces similar results, while the OLS estimate is biased towards zero. 

For the sample of women, the IV estimate on HPS indicates that a woman will reduce her labor 

supply by 1,323 hours per year when she has a work-related health limitation, while she will reduce 

her labor supply by 1,059 and 1,301 hours per year by the OLS and traditional IV estimations, 

respectively.  



The traditional IV estimate and the IV estimate on HPS yield close results. There are two 

possible explanations for it. The first possibility involves a hypothesis that the sample has 

endogeneity rather than measurement error. If it is true, a traditional IV technique will produce a 

consistent estimate compared to the biased OLS estimate. The IV estimate on HPS, which conducts 

an IV strategy for a fraction of observations, will also produce a similar consistent result except a 

larger standard error. The second possible explanation would be that there exists measurement 

error instead of endogeneity and that the potential instrument is valid. Since the valid instrument 

is uncorrelated with the measurement error, it handles the misclassification of work-limiting health, 

leading to the same pattern of results as the first explanation. Future research needs to investigate 

the reason behind the close results between the traditional IV estimate and the proposed IV 

estimate on HPS. In addition, the estimated effect of work-limiting health is different from the 

effect of self-reported health, providing new empirical evidence that economic outcomes resulting 

from health declines are sensitive to which measure of health is used, which is consistent with the 

review of Currie and Madrian (1999) and findings of Siegel (2016) and Li (2023). 

 

7. Conclusion 

The U.S. has been among leading nations with the highest percentage of GDP devoted to health 

care sector (17.3% in 2022).13 Nevertheless, Americans do not necessarily access to higher quality 

health care or have better health outcomes. Many health metrics, for example life expectancy, of 

the U.S. are inferior to those of other OECD countries. Ill health can significantly impair people’s 

 
13 See the website for Centers for Medicare & Medicaid Services: https://www.cms.gov/data-research/statistics-
trends-and-reports/national-health-expenditure-
data/historical#:~:text=U.S.%20health%20care%20spending%20grew,spending%20accounted%20for%2017.3%20p
ercent. 
 

https://www.cms.gov/data-research/statistics-trends-and-reports/national-health-expenditure-data/historical#:~:text=U.S.%20health%20care%20spending%20grew,spending%20accounted%20for%2017.3%20percent
https://www.cms.gov/data-research/statistics-trends-and-reports/national-health-expenditure-data/historical#:~:text=U.S.%20health%20care%20spending%20grew,spending%20accounted%20for%2017.3%20percent
https://www.cms.gov/data-research/statistics-trends-and-reports/national-health-expenditure-data/historical#:~:text=U.S.%20health%20care%20spending%20grew,spending%20accounted%20for%2017.3%20percent
https://www.cms.gov/data-research/statistics-trends-and-reports/national-health-expenditure-data/historical#:~:text=U.S.%20health%20care%20spending%20grew,spending%20accounted%20for%2017.3%20percent


enjoyment of good health per se, productivity in labor market, as well as wellbeing. Studying the 

labor supply effect of ill health adds an important piece to the full picture of evaluating economic 

and welfare consequences of health declines. Knowing such information helps assess economic 

values of improved health outcomes and better assist policy makers in allocating health resources 

in a more cost-effective manner. 

However, studying labor supply effects of ill health presents empirical challenges, one of 

which is due to pervasive measurement error in binary health variables commonly encountered in 

survey data. To solve the problems associated with approaches to misclassified health measures 

that are predominantly used in the literature, this study extracts information on unobserved true 

health through a health index as a linear combination of demographic characteristics and objective 

health measures. Allowing for general correlation between exogenous variables (included and 

excluded) and misclassification process, this paper assumes that both true health and 

misclassification rates depend on this health index. Based on such a generic assumption, this paper 

estimates the health index semi-parametrically without imposing any restrictions on the functional 

form of reported health model or the distribution of misclassification process. This paper defines 

a high probability set to select observations with extreme values of health index; as index values 

become extreme, misclassification rates of corresponding observations are argued to approach zero. 

With an estimated high probability set, the labor supply effect of ill health is estimated by 

implementing an IV strategy that assigns positive weights to observations on the high probability 

set and zero weights to observations off the set. This paper optimizes the estimation of the high 

probability set by balancing the tradeoff between the squared bias and variance of the proposed 

estimator. The results of Monte Carlo simulations suggest that the proposed IV estimator on the 

high probability set demonstrates significant advantages over OLS and conventional IV estimators. 



It shows substantially reduced biases and root-mean-square errors, as well as robustness to severe 

and asymmetric misclassification rates compared to the latter two estimators.  

This study uses the 2012 wave of the HRS to examine the labor supply effect of ill health. 

The results suggest that OLS and conventional IV methods considerably underestimate the amount 

of reduced working hours when people experience illnesses. In particular, the proposed strategy 

estimates that women who report themselves as having “Fair” or “Poor” health reduce their labor 

supply by 1,900 hours per year, while the estimated reduction in yearly hours worked is only 615 

and 1,577 in OLS and conventional IV estimations, respectively. The greatly reduced work hours 

may reflect changes both in the extensive and intensive margin of labor supply. The findings 

suggest that ill health places individuals in a position of increased vulnerability. 

This study has several limitations. First, this is a cross-sectional study. Under the 

assumption on the absence of time-invariant unobserved heterogeneity, the proposed estimation 

strategy effectively resolves misclassified health treatment variables. Nevertheless, the possible 

existence of heterogeneity and the complexity of handling misclassification in panel data warrants 

further development of theoretical econometrics in this area. Second, this study assumes that 

misclassification process is exogenous to labor supply. While this assumption holds in many 

empirical analyses, including those beyond labor economics, the endogeneity of misreporting 

remains a technical issue, as people may misreport their health status based on economic outcomes 

of interest. Since the proposed strategy is essentially an IV estimation based on observations that 

are free of misclassification, it is promising to readily extend this strategy to settings where both 

misclassification and endogeneity co-exist. Yet such extensions require careful examination in 

theory and practice. Third, this study employs a linear labor supply model. Given the prevalence 



of zero hours worked in aging populations and the potential heterogeneous treatment effects, 

further research is needed to extend the proposed strategy to nonlinear regression models. 
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Appendices 
Appendix A: Model Simplification 
Before proposing the estimator, it is necessary to simplify the structural model (1). With the index 

𝑉! recovered, we simplify the structural model using the approach proposed by Robinson (1988) 

for partially linear models. Rewrite the outcome equation in (1) as follows: 

 𝑌! = 𝛼 + 𝑋!"𝛾 + 𝐺(𝑉!) + 𝑛𝑒𝑤𝑒𝑟𝑟𝑜𝑟 (A1) 

where 𝐺(𝑉!) = 𝔼(𝐻!∗|𝑉!)𝛽 = 𝑃!∗(𝑉!)𝛽  and 𝑛𝑒𝑤𝑒𝑟𝑟𝑜𝑟 = I𝐻!∗ − 𝐺(𝑉!)K𝛽 + 𝜀! . As 𝐻!∗  is 

unobserved, the function 𝐺(𝑉!)  is unknown. Taking the expectation of every term in (A1) 

conditional on the index 𝑉!, then 

 𝔼(𝑌!|𝑉!) = 𝛼 + 𝔼(𝑋!|𝑉!)"𝛾 + 𝐺(𝑉!) (A2) 

Making the difference between equations (A1) and (A2) on both sides, we can obtain a differenced 

model as 

 𝑌! − 𝔼(𝑌!|𝑉!) = I𝑋! − 𝔼(𝑋!|𝑉!)K
"𝛾 + 𝑛𝑒𝑤𝑒𝑟𝑟𝑜𝑟 (A3) 

Regarding this differenced model, Robinson (1988) shows that the OLS estimator of the parameter 

𝛾 is consistent at the √𝑁 rate. Substracting the estimator of 𝑋!"𝛾 from both sides and still using 𝑌! 

to denote the differenced outcome on the left-hand side, the model in (1) can be simplified into the 

model as follows: 

 𝑌! = 𝛼 + 𝐻!∗𝛽 + 𝜀! (A4) 

Again, the coefficient 𝛽 reflects the effect of ill health on hours worked. 

Essentially, this simplification process separates the estimation of coefficients on other 

economic covariates from the estimation of health effects on labor supply. Bound (1991) argues 

that the mismeasured health variables will distort the estimated coefficients on other economic 

covariates that are related to health. Furthermore, he mathematically shows that even if the 

measurement error of health variables is addressed, the distorted estimation of coefficients on other 

covariates remains. To separate such twisting effects on labor supply, we use the Robinson's 

technique to first estimate the coefficients on other covariates, leaving the health variable alone in 

the simplified model to address. The Robinson's technique on other covariates does not affect the 

estimation of health effects on hours of work afterwards. At the same time, the later estimation of 

how ill health influences labor supply will not impact the estimation of the coefficients on other 

covariates in the first step. In this way, we can individually achieve consistent estimates of 



coefficients on covariates and health variable, making it possible to compare the relative 

significance of health and other economic covariates in labor supply decisions.   

 

Appendix B: Definition of 𝑺" 

Dropping the subscripts, the mathematical definition of 𝑆Q is 

 𝑆Q = 𝑆I𝑉S, 𝑎, 𝑃SK = 𝑆 k𝑉S, 𝑥I𝑎, 𝑃SKl + 𝑆 k𝑉S, 𝑦I𝑎, 𝑃SKl (A5) 

 𝑆 k𝑉S , 𝑥I𝑎, 𝑃SKl = 𝜏I𝑉SK𝐶 k𝑥I𝑎, 𝑃SKl (A6) 

 𝑆 k𝑉S, 𝑦I𝑎, 𝑃SKl = 𝜏I𝑉SK𝐶 k𝑦I𝑎, 𝑃SKl (A7) 

where 

 
𝐶(𝑧) = �

0,											𝑧 ≤ 0
1 − 𝑒𝑥𝑝 +23

33+23

1,										𝑧 ≥ 𝑏
, 0 < 𝑧 < 𝑏 

(A8) 

 𝜏(𝑉) =
1

1 + 𝑒𝑥𝑝 j𝑁 .$ �𝔼674(9);-
5.667

<=- − 𝑔.(𝑉)�m
 (A9) 

 𝑥(𝑎, 𝑃) = ln 8
9
− ln𝑁, (A10) 

 𝑦(𝑎, 𝑃) = ln 8
859

− ln𝑁, (A11) 

where 𝑏, 𝑘  are constants and 𝑁  the sample size. The construction of the selection function 𝑆Q 

follows the definition of the selection function used in Shen (2013) and Klein et al. (2015) that 

select extreme observations from one tail. To also select observations from the other tail, the 

present study extends their definition analogously on the other extreme end. Here, 𝐶 k𝑥I𝑎, 𝑃SKl 

and 𝐶 k𝑦I𝑎, 𝑃SKl are the core of the selection function 𝑆Q, an extension of the smooth selection 

function in Andrews and Schafgans (1998). As an individual has an extremely small health index 

value I𝑃S < 𝑁+, ⇒ 𝑥I𝑎, 𝑃SK > 0K, 𝐶 k𝑥I𝑎, 𝑃SKl will assign a positive weight to this observation. 

When he or she has an extremely large health index value I𝑃S > 1 − 𝑁+, ⇒ 𝑦I𝑎, 𝑃SK > 0K , 

𝐶 k𝑦I𝑎, 𝑃SKl will assign a positive weight to this observation too. As such, the observations on the 

high probability set are positively weighted, while those observations excluded from the high 

probability set are zero weighted. The addition of the trimming function 𝜏I𝑉SK helps to trim out 



those too extreme index values for which the index density 𝑔.I𝑉SK goes to zero too fast. In this 

way, the selection function 𝑆Q assigns high weights (up to 1) to those observations with the extreme 

index values and low weights (down to 0) to those observations with modest index values.  

 

Appendix C: Proof of Result 1 

Proof of Result 1. Since the trimming function only trims out a very small fraction of observations 

from the high probability set, the remainder constitutes the main body of the high probability set, 

and thus the orders of 𝔼(𝑆0!) and 𝔼(𝑆1!) are mainly determined by the core 𝐶(𝑧). 

 𝔼(𝑆0!) > 𝑃𝑟𝑜𝑏(𝑥 ≥ 𝑏) 

= 𝑃𝑟𝑜𝑏[𝑃!(𝑉!) < 𝑁+,𝑒+3] 

= 𝑃𝑟𝑜𝑏f𝑉! < 𝐹/+%(𝑁+,𝑒+3)h 

=	𝐺.f𝐹/+%(𝑁+,𝑒+3)h 

=	𝐹/f𝐹/+%(𝑁+,𝑒+3)h 

=	𝑁+,𝑒+3 

 

 

 

 

 

(A12) 

And 

 𝔼(𝑆1!) > 𝑃𝑟𝑜𝑏(𝑦 ≥ 𝑏) 

= 𝑃𝑟𝑜𝑏[𝑃!(𝑉!) > 1 − 𝑁+,𝑒+3] 

= 𝑃𝑟𝑜𝑏f𝑉! > 𝐹/+%(1 − 𝑁+,𝑒+3)h 

= 1 − 𝐺.f𝐹/+%(1 − 𝑁+,𝑒+3)h 

> 1 − 𝐹/f𝐹/+%(1 − 𝑁+,𝑒+3)h 

= 𝑁+,𝑒+3 

 

 

 

 

 

(A13) 

where the second equality uses Assumption 2 that 𝑃!(𝑉!) and 𝑃!∗(𝑉!) converge to 0 (1) at the same 

rate on the high probability set. The proofs for 𝔼(𝑆0!$ ) and 𝔼(𝑆1!$ ) follow in a similar method. 



Appendix D: Proof of Result 2 

Proof of Result 2. The proposed estimator in (11) can be rewritten as follows: 

 
𝛽Q − 𝛽 = +
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(A14) 

As for any i.i.d observations {𝑀!}, 8;∑ 𝑀!
-
!*%  converges to its expectation 𝔼(𝑀!) at a √𝑁 rate, it is 

interchangeable to study the bias and variance of 𝛽Q  while replacing sample averages with their 

expectations. Dropping the subscript, 
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(A15) 

The second equality uses the assumption of mean zero of the error term 𝜀. We analyze the order 

of the bias for three cases, depending on the relative rates by which 𝔼(𝑆0) and 𝔼(𝑆1) converge to 

zero: (I) 𝑂I𝔼(𝑆0)K = 𝑂I𝔼(𝑆1)K, (II) 𝑂I𝔼(𝑆0)K > 𝑂I𝔼(𝑆1)K, and (III) 𝑂I𝔼(𝑆0)K < 𝑂I𝔼(𝑆1)K.  

For case (I), 𝔼(@C)
𝔼(C)

→ 𝜆 ∈ (0,1) as 𝑁 → ∞. To see it, 	 

 𝔼(𝑃𝑆)
𝔼(𝑆) =

𝔼(𝑃𝑆0) + 𝔼(𝑃𝑆1)
𝔼(𝑆0) + 𝔼(𝑆1)

 

=
𝑂I𝔼(𝑆1)K

𝑂I𝔼(𝑆0)K + 𝑂I𝔼(𝑆1)K
 

= 𝜆 

 

 

 

(A16) 

where 𝜆 ∈ (0,1). The first equality uses the definition of 𝑆, and the second uses Result 1 as well 

as the fact that 𝑃 < 𝑁+,	on the left tail and 𝑃 > 1 − 𝑁+, on the right tail, so that 𝑂I𝔼(𝑃𝑆0)K <

𝑂I𝔼(𝑃𝑆1)K = 𝑂(𝔼(𝑆1)). Through similar calculations, under Case (II) 𝔼(@C)
𝔼(C)

→ 0 as 𝑁 → ∞, and 



under Case (III) 𝔼(@C)
𝔼(C)

→ 𝜆 ∈ (0,1) as 𝑁 → ∞. These immediate results can be applied to analyses 

of Cases (II) and (III). 

The order of the numerator in (A15) 

 �𝔼 j(𝐻∗ − 𝐻) k𝑃 − 𝔼(@C)
𝔼(C)
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𝔼(C)

l 𝑆|𝑋mi�� 
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l 𝑆� 
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= 𝑁+,𝑂I𝔼(𝑆1)K 

 

 

 

 

 

 

(A17) 

The first equality uses the law of iterated expectation, and the second uses the definition of 𝑃∗ and 

𝑃. The third inequality uses the definition of the selection function 𝑆, the fourth holds because of 

the construction of high probability sets and Assumption 2, and the fifth uses the fact that 𝔼(@C)
𝔼(C)

 

converges to a constant in Case (I). 

The denominator in (A15) is 
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(A18) 

 



The first equality uses the law of iterated expectation, the second holds by the definition of 𝑃, the 

last uses Result 1 as well as the fact that 𝑃 < 𝑁+,	on the left tail and 𝑃 > 1 − 𝑁+, on the right 

tail, so that 𝑂I𝔼(𝑃$𝑆0)K < 𝑂I𝔼(𝑃$𝑆1)K = 𝑂I𝔼(𝑆1)K  and 𝑂I𝔼(𝑃𝑆0)K < 𝑂I𝔼(𝑃𝑆1)K =

𝑂I𝔼(𝑆1)K. 

With the numerator and denominator above, 

 
|𝐵𝑖𝑎𝑠| ≤

𝑁+,𝑂I𝔼(𝑆1)K
𝑂I𝔼(𝑆1)K
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(A19) 

Analyses of cases (II) and (III) lead to the same bias results. 

Turning to the variance of the proposed estimator for case (I), 

 

𝑉𝑎𝑟I𝛽Q − 𝛽K =
𝑉𝑎𝑟 �𝛽(𝐻∗ − 𝐻) �𝑃 − 𝔼(𝑃𝑆)𝔼(𝑆) � 𝑆 + �𝑃 −

𝔼(𝑃𝑆)
𝔼(𝑆) � 𝑆𝜀�

𝑁 j(𝑃𝐻𝑆) − 𝔼(@C)
𝔼(C) 𝔼(𝐻𝑆)m

$  

 

(A20) 

Analyzing the numerator in (A20), 
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(A21) 

The first term on the right-hand side is: 
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(A22) 

The first equality uses the law of iterated expectation. For the second equality, the conditional 

expectation of (𝐻∗ − 𝐻)$ given 𝑋 is calculated by the sum of four cells (𝐻∗ = 𝐻 = 0,𝐻∗ = 𝐻 =

1,  𝐻∗ = 1  while 𝐻 = 1 , and 𝐻∗ = 0  while 𝐻 = 1) multiplied by their respective conditional 

probabilities: 

 𝔼[(𝐻∗ − 𝐻)$|𝑋] = Pr(𝐻∗ = 1,𝐻 = 0|𝑋) + Pr	(𝐻∗ = 0,𝐻 = 1|𝑋) 

= Pr(𝐻 = 0|𝐻∗ = 1, 𝑋) Pr(𝐻∗ = 1|𝑋) + Pr	(𝐻 = 1|𝐻∗ = 0, 𝑋) Pr(𝐻∗ = 0|𝑋) 

= 𝑃1𝑃∗ + 𝑃0(1 − 𝑃∗) 

 

 

(A23) 

The inequality in (A22) uses Assumption 2. 

The second term converges to zero slower than the first term, since 

 
𝔼�𝑃 −

𝔼(𝑃𝑆)
𝔼(𝑆) �

$

𝑆$𝜀$ = 𝔼 ��𝑃 −
𝔼(𝑃𝑆)
𝔼(𝑆) �

$

𝑆$𝔼(𝜀$|𝑋)� 

= 𝜎$𝔼�𝑃 −
𝔼(𝑃𝑆)
𝔼(𝑆) �

$

𝑆0$ + 𝜎$𝔼�𝑃 −
𝔼(𝑃𝑆)
𝔼(𝑆) �

$

𝑆1$ 

= 𝑂(𝔼𝑆0$) + 𝑂(𝔼𝑆1$) 

 

 

 

 

(A24) 

For the third term, by the calculation of the Bias numerator, 
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(A25) 

As 𝔼(𝑆1$) ≥ [𝔼(𝑆1)]$, the second term determines the order of the variance numerator. 

The denominator of the variance in (A20) is: 

 𝑁 j(𝑃𝐻𝑆) − 𝔼(@C)
𝔼(C)

𝔼(𝐻𝑆)m
$
= 𝑂(𝑁[𝔼(𝑆1)]$) 

(A26) 

With the numerator and denominator of the variance above, 
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(A27) 

The last equality comes from 𝑂I𝔼(𝑆0)K = 𝑂I𝔼(𝑆1)K in case (I). The proof for cases (II) and (III) 

follow the same reasoning as that of Case (I). 
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Table 1 Simulation Results for the First Scenario. 
True parameters: Intercept (Intcp) = 2, coefficient on 𝑋' = 1.5, and coefficient on 𝐻∗ = 3.  
 OLS IV IV on HPS  
 Intcp 𝑋' 𝐻∗ Intcp 𝑋' 𝐻∗ Intcp 𝑋' 𝐻∗ HPS 

Param 
           
𝝁\ = 𝟎  
Mean 2.441 1.559 2.117 2.237 1.522 2.524 2.083 1.501 2.833 0.377 
Sd 0.038 0.027 0.053 0.042 0.035 0.058 0.039 0.031 0.057 0.002 
Rmse 0.442 0.065 0.885 0.240 0.041 0.480 0.092 0.031 0.176 -- 
           
𝝁\ = −𝟏  
Mean 3.838 1.569 1.137 3.780 1.542 1.353 2.456 1.502 2.546 0.352 
Sd 0.046 0.026 0.053 0.057 0.033 0.071 0.122 0.027 0.126 0.007 
Rmse 1.838 0.074 1.864 1.781 0.053 1.649 0.472 0.027 0.471 -- 
           
𝝁\ = −𝟎. 𝟓  
Mean 3.087 1.565 1.799 2.929 1.530 2.166 2.273 1.501 2.719 0.357 
Sd 0.046 0.027 0.055 0.053 0.035 0.065 0.068 0.029 0.077 0.004 
Rmse 1.088 0.070 1.203 0.931 0.046 0.836 0.281 0.029 0.291 -- 
           
𝝁\ = +𝟎. 𝟓  
Mean 2.114 1.566 1.797 1.904 1.531 2.164 2.008 1.501 2.719 0.372 
Sd 0.029 0.027 0.053 0.034 0.035 0.066 0.034 0.029 0.077 0.003 
Rmse 0.118 0.071 1.204 0.102 0.046 0.839 0.035 0.029 0.292 -- 
           
𝝁\ = +𝟏  
Mean 2.024 1.568 1.135 1.867 1.542 1.347 1.996 1.501 2.548 0.352 
Sd 0.026 0.027 0.051 0.032 0.033 0.070 0.033 0.028 0.128 0.007 
Rmse 0.035 0.073 1.866 0.137 0.053 1.654 0.033 0.028 0.470 -- 
           
𝑁 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 
Replication 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Notes: Intcp, intercept; Sd, standard deviation; Rmse, root-mean-square error; HPS Param, high probability set 
parameter. 
  



Table 2 Simulation Results for the Second Scenario. 
True parameters: Intercept (Intcp) = 2, coefficient on 𝑋' = 1.5, and coefficient on 𝐻∗ = 3.  
 OLS IV IV on HPS  
 Intcp 𝑋' 𝐻∗ Intcp 𝑋' 𝐻∗ Intcp 𝑋' 𝐻∗ HPS 

Param 
  
𝑵𝒐	𝒎𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏:	𝑷𝑳 = 𝟎,𝑷𝑹 = 𝟎  
Mean 1.999 1.501 3.000 1.999 1.501 3.000 2.000 1.501 3.000 0.347 
Sd 0.026 0.019 0.037 0.033 0.023 0.053 0.044 0.023 0.065 0.003 
Rmse 0.026 0.019 0.037 0.033 0.023 0.053 0.044 0.023 0.065 -- 
           
𝑴𝒐𝒅𝒆𝒓𝒂𝒕𝒆	𝒎𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏:	𝑷𝑳 = 	𝟎. 𝟓 ∗ 𝚽(𝟓𝑽), 𝑷𝑹 = 	𝟎. 𝟓 ∗ [𝟏 −𝚽(𝟓𝑽)]  
Mean 2.244 1.531 2.510 2.131 1.511 2.736 2.020 1.501 2.959 0.361 
Sd 0.035 0.024 0.048 0.038 0.031 0.056 0.042 0.028 0.060 0.003 
Rmse 0.247 0.039 0.493 0.136 0.033 0.270 0.046 0.028 0.073 -- 
           
𝑺𝒆𝒗𝒆𝒓𝒆	𝒎𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏:	𝑷𝑳 = 	𝟎. 𝟗 ∗ 𝚽(𝟓𝑽), 𝑷𝑹 = 	𝟎. 𝟗 ∗ [𝟏 −𝚽(𝟓𝑽)]  
Mean 2.441 1.559 2.117 2.237 1.522 2.524 2.083 1.501 2.833 0.377 
Sd 0.038 0.027 0.053 0.042 0.035 0.058 0.039 0.031 0.057 0.002 
Rmse 0.442 0.065 0.885 0.240 0.041 0.480 0.092 0.031 0.176 -- 
           
𝑨𝒔𝒚𝒎𝒎𝒆𝒕𝒓𝒊𝒄	𝒎𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏:	𝑷𝑳 = 	𝟎. 𝟕 ∗ 𝚽(𝟓𝑽), 𝑷𝑹 = 	𝟎. 𝟐 ∗ [𝟏 −𝚽(𝟓𝑽)]  
Mean 2.108 1.526 2.576 2.014 1.512 2.735 2.004 1.501 2.945 0.3597 
Sd 0.032 0.024 0.046 0.037 0.031 0.056 0.043 0.027 0.061 0.003 
Rmse 0.113 0.035 0.426 0.039 0.033 0.271 0.044 0.027 0.082 -- 
           
𝑨𝒔𝒚𝒎𝒎𝒆𝒕𝒓𝒊𝒄	𝒎𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏:	𝑷𝑳 = 	𝟎. 𝟐 ∗ 𝚽(𝟓𝑽), 𝑷𝑹 = 	𝟎. 𝟕 ∗ [𝟏 −𝚽(𝟓𝑽)]  
Mean 2.314 1.527 2.576 2.248 1.513 2.735 2.050 1.502 2.945 0.360 
Sd 0.035 0.023 0.048 0.039 0.030 0.056 0.040 0.027 0.061 0.003 
Rmse 0.316 0.035 0.427 0.251 0.033 0.271 0.064 0.027 0.082 -- 
           
𝑁 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 
Replication 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Notes: Intcp, intercept; Sd, standard deviation; Rmse, root-mean-square error; HPS Param, high probability set 
parameter. 
  



Table 3 Variable Description. 
Variable Description of Variable 
Structural Model: 𝑌!  

𝐻𝑜𝑢𝑟𝑠	𝑤𝑜𝑟𝑘𝑒𝑑 Total hours respondent works per year at the main and 2nd job. 
  
Structural Model: 𝑋! and 𝐻!  

𝐴𝑔𝑒 Age in years. 
𝐴𝑔𝑒	𝑠𝑞𝑢𝑎𝑟𝑒𝑑 Square of age. 

𝑁𝑜𝑛𝑙𝑎𝑏𝑜𝑟	𝑖𝑛𝑐𝑜𝑚𝑒 Total household nonlabor income in thousands of dollars, excluding wages 
and salaries earned by respondent. 

𝑅𝑎𝑐𝑒 = 1 if white; = 0 otherwise. 
𝑀𝑎𝑟𝑟𝑖𝑒𝑑 = 1 if married or partnered; = 0 otherwise. 

Educational Attainment  
𝐿𝑒𝑠𝑠	𝑡ℎ𝑎𝑛	ℎ𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙 Reference. 

𝐺𝐸𝐷 = 1 if having GED and 12 or fewer years of education; =0 otherwise. 
𝐻𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙 = 1 if having high school diploma and 12 or fewer years of education; = 0 

otherwise. 
𝑆𝑜𝑚𝑒	𝑐𝑜𝑙𝑙𝑒𝑔𝑒 = 1 if having high school diploma or GED and 13 or more years of 

education, but less than bachelor’s degree; = 0 otherwise 
𝐶𝑜𝑙𝑙𝑒𝑔𝑒	𝑎𝑏𝑜𝑣𝑒 = 1 if having college degree or greater; = 0 otherwise. 

Census Division  
𝑁𝑒𝑤	𝐸𝑛𝑔𝑙𝑎𝑛𝑑 = 1 if census division of residence is New England; = 0 otherwise. 
𝑀𝑖𝑑	𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 = 1 if census division of residence is Middle Atlantic; = 0 otherwise. 

𝐸𝑎𝑠𝑡	𝑁𝑜𝑟𝑡ℎ	𝐶𝑒𝑛𝑡𝑟𝑎𝑙 = 1 if census division of residence is East North Central; = 0 otherwise. 
𝑊𝑒𝑠𝑡	𝑁𝑜𝑟𝑡ℎ	𝐶𝑒𝑛𝑡𝑟𝑎𝑙 = 1 if census division of residence is West North Central; = 0 otherwise. 
𝑆𝑜𝑢𝑡ℎ	𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 = 1 if census division of residence is South Atlantic; = 0 otherwise. 

𝐸𝑎𝑠𝑡	𝑆𝑜𝑢𝑡ℎ	𝐶𝑒𝑛𝑡𝑟𝑎𝑙 = 1 if census division of residence is East South Central; = 0 otherwise. 
𝑊𝑒𝑠𝑡	𝑆𝑜𝑢𝑡ℎ	𝐶𝑒𝑛𝑡𝑟𝑎𝑙 = 1 if census division of residence is West South Central; = 0 otherwise. 

𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛 = 1 if census division of residence is Mountain; = 0 otherwise. 
𝑃𝑎𝑐𝑖𝑓𝑖𝑐	𝑜𝑟	𝑁𝑜𝑡	𝑈𝑆 Reference. 

𝑊𝑜𝑟𝑘	𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔	ℎ𝑒𝑎𝑙𝑡ℎ	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 1 if respondent has a health problem that limits the kind or amount of 
paid work; = 0 otherwise. 

𝑆𝑒𝑙𝑓 − 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	ℎ𝑒𝑎𝑙𝑡ℎ	𝑠𝑡𝑎𝑡𝑢𝑠 = 1 if respondent reports “Fair” or “Poor” general health status; = 0 if 
respondent reports “Excellent,” “Very good,” or “Good” general health 
status. 

  
Excluded Variables: 𝑍!  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠	# Number of limitations on daily life activities, including “walking several 
blocks,” “sitting for about 2 hours,” “getting up from a chair after sitting 
for long periods,” “climbing several flights of stairs without resting, 
stooping/kneeling/crouching,” “lifting or carrying weights over 10 lbs.,” 
“reaching arms above shoulder level,” and “pushing or pulling large 
objects.” 

𝐻𝑖𝑔ℎ	𝑏𝑙𝑜𝑜𝑑	𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 1 if respondent has been diagnosed with “high blood pressure or 
hypertension;” = 0 otherwise. 

𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 = 1 if respondent has been diagnosed with “diabetes or high blood sugar;” 
= 0 otherwise. 

𝐶𝑎𝑛𝑐𝑒𝑟 = 1 if respondent has been diagnosed with “cancer or a malignant tumor of 
any kind except skin cancer;” = 0 otherwise. 

𝐿𝑢𝑛𝑔	𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 = 1 if respondent has been diagnosed with “chronic lung disease except 
asthma such as chronic bronchitis or emphysema;” = 0 otherwise. 

𝐻𝑒𝑎𝑟𝑡	𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 = 1 if respondent has been diagnosed with “heart attack, coronary heart 
disease, angina, congestive heart failure, or other heart problems;” = 0 
otherwise. 



𝑆𝑡𝑟𝑜𝑘𝑒 = 1 if respondent has been diagnosed with “stroke or transient ischemic 
attack (TIA);” = 0 otherwise. 

𝑃𝑠𝑦𝑐ℎ𝑖𝑎𝑡𝑟𝑖𝑐	𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 = 1 if respondent has been diagnosed with “emotional, nervous, or 
psychiatric problems;” = 0 otherwise. 

  
 
  



Table 4 Descriptive Statistics. 
Variable Men Women 
Panel A: Basic Demographics   

𝐴𝑔𝑒 56.1 
(3.3) 

55.5 
(3.7) 

45 − 50	(%) 4.8 9.9 
51 − 55	(%) 37.6 37.5 
56 − 61	(%) 57.6 52.6 
𝑊ℎ𝑖𝑡𝑒	(%) 62.0 60.6 

𝑁𝑜𝑛𝑙𝑎𝑏𝑜𝑟	𝑖𝑛𝑐𝑜𝑚𝑒 
(𝑖𝑛	𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑠	𝑜𝑓	𝑑𝑜𝑙𝑙𝑎𝑟𝑠) 

47.6 
(90.3) 

52.2 
(96.9) 

𝑀𝑎𝑟𝑟𝑖𝑒𝑑	(%) 76.6 66.3 
𝐿𝑒𝑠𝑠	𝑡ℎ𝑎𝑛	ℎ𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙	(%) 15.8 14.3 

𝐺𝐸𝐷	(%) 6.2 6.1 
𝐻𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙	(%) 25.1 24.8 
𝑆𝑜𝑚𝑒	𝑐𝑜𝑙𝑙𝑒𝑔𝑒	(%) 28.5 29.9 

𝐶𝑜𝑙𝑙𝑒𝑔𝑒	𝑎𝑛𝑑	𝑎𝑏𝑜𝑣𝑒	(%) 24.4 24.8 
   
Panel B: Labor Supply   

𝐻𝑜𝑢𝑟𝑠	𝑤𝑜𝑟𝑘𝑒𝑑 1567.0 
(1185.1) 

1181.2 
(1075.5) 

𝑊𝑜𝑟𝑘𝑖𝑛𝑔	𝑓𝑜𝑟	𝑝𝑎𝑦	(%) 70.8 62.4 
𝑊𝑜𝑟𝑘𝑖𝑛𝑔	𝑜𝑛	2𝑛𝑑	𝑗𝑜𝑏	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑜𝑛	𝑤𝑜𝑟𝑘𝑖𝑛𝑔	𝑓𝑜𝑟	𝑝𝑎𝑦	(%) 15.8 13.4 
𝐻𝑜𝑢𝑟𝑠	𝑤𝑜𝑟𝑘𝑒𝑑	𝑜𝑛	1𝑠𝑡	𝑗𝑜𝑏	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑜𝑛	𝑤𝑜𝑟𝑘𝑖𝑛𝑔	𝑓𝑜𝑟	𝑝𝑎𝑦 

 
2144.1 
(699.9) 
(N = 2113) 

1844.2 
(686.6) 
(N = 2545) 

𝐻𝑜𝑢𝑟𝑠	𝑤𝑜𝑟𝑘𝑒𝑑	𝑜𝑛	2𝑛𝑑	𝑗𝑜𝑏	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑜𝑛	𝑤𝑜𝑟𝑘𝑖𝑛𝑔	𝑜𝑛	2𝑛𝑑	𝑗𝑜𝑏 
 

530.3 
(518.9) 
(N = 307) 

459.7 
(483.7) 
(N = 297) 

   
Panel C: Health Measures   

𝑊𝑜𝑟𝑘	𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔	ℎ𝑒𝑎𝑙𝑡ℎ	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠	(%) 24.6 26.9 
𝑆𝑒𝑙𝑓 − 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	ℎ𝑒𝑎𝑙𝑡ℎ	𝑠𝑡𝑎𝑡𝑢𝑠	(%) 24.3 27.7 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠	# 1.7 
(2.4) 

2.3 
(2.6) 

𝐻𝑖𝑔ℎ	𝑏𝑙𝑜𝑜𝑘	𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒	(%) 49.7 47.6 
𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠	(%) 19.9 19.1 
𝐶𝑎𝑛𝑐𝑒𝑟	(%) 5.2 9.0 

𝐿𝑢𝑛𝑔	𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠	(%) 5.6 9.0 
𝐻𝑒𝑎𝑟𝑡	𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠	(%) 14.6 12.4 

𝑆𝑡𝑟𝑜𝑘𝑒	(%) 3.9 4.0 
𝑃𝑠𝑦𝑐ℎ𝑖𝑎𝑡𝑟𝑖𝑐	𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠	(%) 14.4 24.2 

𝑁 2995 4089 
Notes: The sample is from the HRS 2012 wave. Figures in parentheses are standard errors. 
  



Table 5 Frequencies of Reports on Two Subjective Health Measures. 
Men    
 𝐺𝑜𝑜𝑑, 𝑣𝑒𝑟𝑦	𝑔𝑜𝑜𝑑, 𝑜𝑟	𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 

𝑠𝑒𝑙𝑓 − 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	ℎ𝑒𝑎𝑙𝑡ℎ 
𝐹𝑎𝑖𝑟	𝑜𝑟	𝑝𝑜𝑜𝑟 

𝑠𝑒𝑙𝑓 − 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	ℎ𝑒𝑎𝑙𝑡ℎ 
𝑇𝑜𝑡𝑎𝑙 

𝑊𝑜𝑟𝑘 − 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 
ℎ𝑒𝑎𝑙𝑡ℎ	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	(𝑛𝑜) 

1954 303 2257 

𝑊𝑜𝑟𝑘 − 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 
ℎ𝑒𝑎𝑙𝑡ℎ	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	(𝑦𝑒𝑠) 

314 424 738 

𝑇𝑜𝑡𝑎𝑙 2268 727 2995 
    
Women    
 𝐺𝑜𝑜𝑑, 𝑣𝑒𝑟𝑦	𝑔𝑜𝑜𝑑, 𝑜𝑟	𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 

𝑠𝑒𝑙𝑓 − 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	ℎ𝑒𝑎𝑙𝑡ℎ 
𝐹𝑎𝑖𝑟	𝑜𝑟	𝑝𝑜𝑜𝑟 

𝑠𝑒𝑙𝑓 − 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	ℎ𝑒𝑎𝑙𝑡ℎ 
𝑇𝑜𝑡𝑎𝑙 

𝑊𝑜𝑟𝑘 − 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 
ℎ𝑒𝑎𝑙𝑡ℎ	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	(𝑛𝑜) 

2544 444 2988 

𝑊𝑜𝑟𝑘 − 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 
ℎ𝑒𝑎𝑙𝑡ℎ	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	(𝑦𝑒𝑠) 

413 688 1101 

𝑇𝑜𝑡𝑎𝑙 2957 1132 4089 
Notes: The sample is from the HRS 2012 wave. Figures in each cell indicate the number of observations in 
corresponding categories.  
 
  



Table 6 Labor Supply Effects of Self-reported Health Status for Men. 
 OLS IV IV on HPS 

𝐹𝑎𝑖𝑟	𝑜𝑟	𝑝𝑜𝑜𝑟 
𝑠𝑒𝑙𝑓 − 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	ℎ𝑒𝑎𝑙𝑡ℎ 

-734.4 
(-828.2, -640.6) 

-2014.7 
(-2232.6, -1796.7) 

-2026.6 
(-2588.5, -1464.8) 

𝐴𝑔𝑒 498.3 
(221.3, 775.3) 

498.4 
(27.9, 968.9) 

475.3 
(209.8, 740.8) 

𝐴𝑔𝑒$ -4.9 
(-7.4, -2.3) 

-4.7 
(-8.9, -.5) 

-4.6 
(-7.0, -2.2) 

𝑁𝑜𝑛𝑙𝑎𝑏𝑜𝑟	𝑖𝑛𝑐𝑜𝑚𝑒 
(𝑖𝑛	𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑠	𝑜𝑓	𝑑𝑜𝑙𝑙𝑎𝑟𝑠) 

.5 
(.0, .9) 

-1.9 
(-3.0, -.7) 

-2.0 
(-3.0, -1.0) 

𝑊ℎ𝑖𝑡𝑒 231.3 
(148.1, 314.5) 

186.5 
(90.2, 282.8) 

173.8 
(92.8, 254.8) 

𝑀𝑎𝑟𝑟𝑖𝑒𝑑 423.8 
(330.6, 517.0) 

395.2 
(285.0, 505.4) 

375.4 
(282.6, 468.2) 

𝐿𝑒𝑠𝑠	𝑡ℎ𝑎𝑛	ℎ𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙 Reference Reference Reference 
𝐺𝐸𝐷 -67.8 

(-250.6, 115.1) 
-202.4 
(-413.3, 8.6) 

-225.0 
(-405.0, -45.1) 

𝐻𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙 178.4 
(51.2, 305.5) 

-65.9 
(-216.9, 85.2) 

-123.5 
(-252.5, 5.5) 

𝑆𝑜𝑚𝑒	𝑐𝑜𝑙𝑙𝑒𝑔𝑒 250.3 
(124.7, 376.0) 

-7.8 
(-159.6, 144.0) 

-78.1 
(-208.1, 51.9) 

𝐶𝑜𝑙𝑙𝑒𝑔𝑒	𝑎𝑛𝑑	𝑎𝑏𝑜𝑣𝑒 428.1 
(294.7, 561.5) 

95.1 
(-69.7, 260.0) 

44.6 
(-97.1, 186.4) 

𝑁 2995 2995 2995 
Notes: 

1. Figures in parentheses are 95% confidence interval. 
2. The OLS, IV, and IV on HPS regressions control for eight dummy variables of census division of residence 

described in Table 1, including New England, Middle Atlantic, East North Central, West North Central, 
South Atlantic, East South Central, West South Central, and Mountain (Pacific/Not US as the reference 
group). 
 

  



Table 7 Labor Supply Effects of Self-reported Health Status for Women. 
 OLS IV IV on HPS 

𝐹𝑎𝑖𝑟	𝑜𝑟	𝑝𝑜𝑜𝑟 
𝑠𝑒𝑙𝑓 − 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	ℎ𝑒𝑎𝑙𝑡ℎ 

-615.2 
(-687.7, -542.7) 

-1577.1 
(-1726.0, -1428.1) 

-1900.4 
(-2322.0, -1478.7) 

𝐴𝑔𝑒 508.1 
(312.8, 703.4) 

439.0 
(169.8, 708.3) 

506.3 
(316.9, 695.6) 

𝐴𝑔𝑒$ -4.9 
(-6.6, -3.1) 

-4.2 
(-6.6, -1.7) 

-4.8 
(-6.5, -3.0) 

𝑁𝑜𝑛𝑙𝑎𝑏𝑜𝑟	𝑖𝑛𝑐𝑜𝑚𝑒 
(𝑖𝑛	𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑠	𝑜𝑓	𝑑𝑜𝑙𝑙𝑎𝑟𝑠) 

-.9 
(-1.3, -.6) 

-2.2 
(-3.0, -1.3) 

-2.0 
(-2.6, -1.3) 

𝑊ℎ𝑖𝑡𝑒 119.9 
(53.9, 186.0) 

98.3 
(24.6, 172.0) 

53.7 
(-11.5, 118.9) 

𝑀𝑎𝑟𝑟𝑖𝑒𝑑 -3.9 
(-74.6, 66.8) 

-33.7 
(-117.6, 50.2) 

-30.4 
(-103.6, 42.7) 

𝐿𝑒𝑠𝑠	𝑡ℎ𝑎𝑛	ℎ𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙 Reference Reference Reference 
𝐺𝐸𝐷 229.9 

(81.2, 378.7) 
100.4 
(-64.4, 265.2) 

62.6 
(-84.1, 209.3) 

𝐻𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙 377.3 
(272.3, 482.2) 

149.6 
(30.5, 268.6) 

155.3 
(48.1, 262.5) 

𝑆𝑜𝑚𝑒	𝑐𝑜𝑙𝑙𝑒𝑔𝑒 465.5 
(363.1, 568.0) 

206.7 
(87.8, 325.5) 

203.1 
(96.6, 309.7) 

𝐶𝑜𝑙𝑙𝑒𝑔𝑒	𝑎𝑛𝑑	𝑎𝑏𝑜𝑣𝑒 609.0 
(499.2, 718.7) 

272.0 
(140.8, 403.1) 

271.5 
(154.7, 388.2) 

𝑁 4089 4089 4089 
Notes: 

1. Figures in parentheses are 95% confidence interval. 
2. The OLS, IV, and IV on HPS regressions control for eight dummy variables of census division of residence 

described in Table 1, including New England, Middle Atlantic, East North Central, West North Central, 
South Atlantic, East South Central, West South Central, and Mountain (Pacific/Not US as the reference 
group). 

 
  



Table 8 Labor Supply Effects of Work-limiting Health Condition for Men. 
 OLS IV IV on HPS 

𝑊𝑜𝑟𝑘 − 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 
ℎ𝑒𝑎𝑙𝑡ℎ	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	(𝑦𝑒𝑠) 

-1288.9 
(-1372.6, -1205.2) 

-1666.6 
(-1797.0, -1536.3) 

-1659.0 
(-1888.4, -1429.6) 

𝐴𝑔𝑒 422.8 
(170.8, 674.8) 

471.8 
(84.4, 859.2) 

421.0 
(156.5, 685.5) 

𝐴𝑔𝑒$ -4.1 
(-6.4, -1.8) 

-4.5 
(-7.9, -1.0) 

-4.1 
(-6.5, -1.7) 

𝑁𝑜𝑛𝑙𝑎𝑏𝑜𝑟	𝑖𝑛𝑐𝑜𝑚𝑒 
(𝑖𝑛	𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑠	𝑜𝑓	𝑑𝑜𝑙𝑙𝑎𝑟𝑠) 

.6 
(.1, 1.0) 

-.6 
(-1.6, .3) 

.7 
(.3, 1.1) 

𝑊ℎ𝑖𝑡𝑒 227.4 
(151.8, 303.0) 

231.4 
(152.6, 310.2) 

205.5 
(126.2, 284.7) 

𝑀𝑎𝑟𝑟𝑖𝑒𝑑 284.4 
(198.9, 369.9) 

262.6 
(170.9, 354.3) 

248.6 
(156.1, 341.1) 

𝐿𝑒𝑠𝑠	𝑡ℎ𝑎𝑛	ℎ𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙 Reference Reference Reference 
𝐺𝐸𝐷 120.5 

(-45.7, 286.6) 
166.9 
(-6.0, 339.7) 

163.1 
(-14.0, 340.3) 

𝐻𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙 274.8 
(160.4, 389.1) 

260.4 
(141.8, 379.1) 

245.6 
(127.0, 364.1) 

𝑆𝑜𝑚𝑒	𝑐𝑜𝑙𝑙𝑒𝑔𝑒 321.0 
(208.4, 433.7) 

318.9 
(201.1, 436.6) 

298.7 
(181.4, 416.0) 

𝐶𝑜𝑙𝑙𝑒𝑔𝑒	𝑎𝑛𝑑	𝑎𝑏𝑜𝑣𝑒 410.0 
(290.4, 529.6) 

368.3 
(241.0, 495.7) 

351.1 
(222.1, 480.0) 

𝑁 2995 2995 2995 
Notes: 

1. Figures in parentheses are 95% confidence intervals. 
2. The OLS, IV, and IV on HPS regressions control for eight dummy variables of census division of residence 

described in Table 1, including New England, Middle Atlantic, East North Central, West North Central, 
South Atlantic, East South Central, West South Central, and Mountain (Pacific/Not US as the reference 
group). 

  



Table 9 Labor Supply Effects of Work-limiting Health Condition for Women. 
 OLS IV IV on HPS 

𝑊𝑜𝑟𝑘 − 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 
ℎ𝑒𝑎𝑙𝑡ℎ	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	(𝑦𝑒𝑠) 

-1059.2 
(-1125.2, -993.3) 

-1300.8 
(-1402.2, -1199.3) 

-1323.1 
(-1548.9, -1097.2) 

𝐴𝑔𝑒 533.4 
(352.4, 714.4) 

525.4 
(293.6, 757.2) 

495.2 
(304.8, 685.7) 

𝐴𝑔𝑒$ -5.0 
(-6.7, -3.4) 

-4.9 
(-7.0, -2.8) 

-4.7 
(-6.4, -2.9) 

𝑁𝑜𝑛𝑙𝑎𝑏𝑜𝑟	𝑖𝑛𝑐𝑜𝑚𝑒 
(𝑖𝑛	𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑠	𝑜𝑓	𝑑𝑜𝑙𝑙𝑎𝑟𝑠) 

-.9 
(-1.2, -.6) 

-1.2 
(-2.0, -.5) 

-.9 
(-1.2, -.6) 

𝑊ℎ𝑖𝑡𝑒 135.4 
(74.3, 196.6) 

146.7 
(83.6, 209.7) 

115.3 
(51.1, 179.4) 

𝑀𝑎𝑟𝑟𝑖𝑒𝑑 -58.9 
(-124.5, 6.7) 

-68.3 
(-140.8, 4.2) 

-70.5 
(-139.7, -1.4)  

𝐿𝑒𝑠𝑠	𝑡ℎ𝑎𝑛	ℎ𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙 Reference Reference Reference 
𝐺𝐸𝐷 323.2 

(185.7, 460.6) 
344.3 
(204.0, 484.6) 

287.2 
(142.9, 431.5) 

𝐻𝑖𝑔ℎ	𝑠𝑐ℎ𝑜𝑜𝑙 383.5 
(287.3, 479.7) 

351.0 
(251.8, 450.1) 

344.2 
(242.4, 446.0) 

𝑆𝑜𝑚𝑒	𝑐𝑜𝑙𝑙𝑒𝑔𝑒 523.2 
(430.1, 616.3) 

509.6 
(413.3, 605.9) 

516.3 
(418.7, 613.9) 

𝐶𝑜𝑙𝑙𝑒𝑔𝑒	𝑎𝑛𝑑	𝑎𝑏𝑜𝑣𝑒 599.2 
(499.7, 698.7) 

559.1 
(453.7, 664.4) 

565.6 
(460.1, 671.2) 

𝑁 4089 4089 4089 
Notes: 

1. Figures in parentheses are 95% confidence intervals. 
2. The OLS, IV, and IV on HPS regressions control for eight dummy variables of census division of residence 

described in Table 1, including New England, Middle Atlantic, East North Central, West North Central, 
South Atlantic, East South Central, West South Central, and Mountain (Pacific/Not US as the reference 
group). 

 


