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Abstract

We describe identification assumptions underlying synthetic control studies and offer recom-
mendations for key—and normally ad hoc—implementation decisions, focusing on model se-
lection; model fit; cross-validation; and decision rules for inference. We outline how to im-
plement a Synthetic Control Using Lasso (SCUL). The method—available as an R package—
allows for a high-dimensional donor pool; automates model selection; includes donors from
a wide range of variable types; and permits both extrapolation and negative weights. In an
application, we employ our recommendations and the SCUL strategy to estimate how recre-
ational marijuana legalization affects sales of alcohol and over-the-counter painkillers, finding
reductions in alcohol sales.
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1 Introduction

The synthetic control methodology is a strategy for estimating causal treatment effects for idiosyn-
cratic historical events. In the typical application, researchers observe time series outcomes for
both a treated unit and a number of untreated units. A weighted average of the untreated series is
used as a counterfactual estimate of the treated series, which is referred to as a synthetic compari-
son group. Weights are chosen to minimize discrepancies between the synthetic comparison group
and the treated unit in the pre-treatment time period. Treatment effect estimates are the difference
between observed outcomes and the synthetic counterfactual. Statistical inference is normally
organized around a placebo analysis; in which, pseudo-treatment effects are estimated for many
untreated placebo units, and the distribution of pseudo-estimates represents the null distribution of
no treatment effect.

The method is very popular, but can be somewhat opaque in application. Synthetic control
studies are usually framed as quasi-experimental studies and are included in the modern canon of
design-based empirical strategies. A hallmark of the design-based movement in empirical social
science is careful discussion about the link between identifying assumptions and the social or
economic outcome of interest. One concern with the synthetic control method is that the scientific
community does not always have a clear understanding of the technical and practical conditions
under which the method is apt to work well. Another is that implementing synthetic control studies
involves a series of operational decisions that are rarely well documented or explained. Moreover,
these ambiguities are expanding as researchers apply the synthetic control technique to a broader
range of situations involving multiple treated units (Abadie and L"Hour, 2019; Cavallo et al., 2013;
Hainmueller, 2012; Robbins et al., 2017; Xu, 2017), microdata (Abadie and L’Hour, 2019; Robbins
et al., 2017), extrapolation (Arkhangelsky et al., 2018; Doudchenko and Imbens, 2017), imperfect
controls (Powell, 2019), and poor pre-treatment fit (Ben-Michael et al., 2018). A goal of this
paper is to make the conceptual and practical challenges associated with synthetic controls more
vivid to other applied researchers. As such, we highlight identification assumptions and offer
recommendations applicable to key decisions that arise in any synthetic control study.

It is well known that difference-in-difference studies depend on the common trends assump-
tion, and applied studies are full of efforts to assess the credibility of this assumption in specific
situations (Wing et al., 2018). Likewise, it is standard knowledge that instrumental variables must
satisfy detailed versions of assumptions about relevance, monotonicity, independence, and exclu-
sion. While these restrictions may be empirically untestable, well-executed studies explain how
the abstract assumptions apply in a given situation and often give examples of behaviors that would
violate the core assumptions. Synthetic control studies generally do not follow this practice, often

omitting both description and tests of the core identifying assumptions. We outline two simple



identification assumptions required for a synthetic control design to identify causal treatment pa-
rameters: (1) conditional independence of treatment exposure and potential outcomes after match-
ing on an underlying factor structure, and (2) no dormant factors during the pre-treatment period.
While neither of these assumptions is directly testable, we offer perspectives and strategies that
may help in interpreting the validity of such assumptions in applied work.

A useful way to think about synthetic controls is as a procedure that attempts to match donor
series to target series based on the unobserved factors that determine the data generating process
in the pre-treatment period. If treatment affects the data generating process for the target unit, then
deviations from the matched donor series following treatment may represent a treatment effect.
When framed in this manner, identification assumptions and strategies for model selection are
more salient. One contribution of this paper is the insight that including donor variables of different
types than the target series may help better identify the underlying factors driving pre-treatment
data generation. For example, if one were trying to predict cigarette sales in a particular state,
out-of-state cigar sales, out-of-state e-cigarette use, and out-of-state cigarette prices would all be
reasonable donor variable types since each could help identify unobserved factors that affect in-
state cigarette demand. As such, we use a wide range of donor variable types to construct our
synthetic control groups—mnot just variables of the same type as the target variable, as is common
practice. However, increasing the size of the donor pool is not without issue; large donor pools
raise overfitting concerns and an identification problem arises when the number of donor series
exceeds the number of observations. For this reason, we use a method to construct cross-validated
donor weights that avoids overfitting and can handle a high-dimensional donor pool.

Most applied synthetic control studies choose donor weights using the approach developed in
the seminal work of Abadie et al. (2010). This approach imposes several ancillary restrictions that
are not required by the identifying assumptions. For example, the classic method does not allow
for a donor pool larger than the number of time periods, and it requires that synthetic groups be
constructed using non-negative weights that sum to one. The weight restriction forces the synthetic
control group to be a convex combination of donor groups. This prevents extrapolation beyond the
common support of the donor pool (i.e., convex hull). While this can be a desirable property,
we demonstrate simple and empirically relevant situations in which this restriction prevents the
synthetic control method from selecting the ideal donor series, and other situations in which it pre-
vents the synthetic control from incorporating information from donors that are reliably negatively
correlated with the target series.

Recent methodological work has proposed a number of alternative strategies for estimating syn-
thetic control weights (Arkhangelsky et al., 2018; Doudchenko and Imbens, 2017; Powell, 2019).
In a similar vein, we use a method called Synthetic Control Using Lasso (SCUL) to construct

donor weights. This method is a flexible, data-driven way to construct synthetic control groups. It



relies on lasso regressions, which are popular in the machine-learning literature, and favor weights
that predict well out of sample. In general, the approach allows for a high-dimensional donor pool
that may be larger than the number of time periods, extrapolation from the donor pool, counter-
cyclical weights, and the same model selection procedure to be used for target and placebo series.
We discuss the advantages and disadvantages of these features throughout the paper. We view the
combination of this statistical approach and following our recommendations outlined below as the
SCUL procedure

Regardless of how the weights are constructed, every synthetic control study must make a
number of decisions related to the donor pool, model selection, and decision rules for statistical
inference. These decisions are often ad hoc and undocumented. To serve as a guide for other
applied research, we catalogue these decisions and offer accompanying recommendations and the
reasons behind each recommendation. For example, we consider the conditions under which a unit
should be discarded in advance of data analysis. We recommend discarding any series (treated
or placebo) when a pre-specified, unit-free threshold indicating poor model fit is exceeded. The
current status quo is to eliminate only candidate placebo series when the synthetic prediction offers
a worse pre-treatment fit than that of the synthetic estimate for the treated series. When using rank-
based p-values, the status quo approach makes it more likely that the estimated treatment effect
will be an outlier in the placebo distribution, overstating statistical significance. Moreover, when
root mean squared error is used to measure fit, candidate placebo series that have larger nominal
variance, but not necessarily worse fit, are penalized. We propose a standardized Cohen’s-D-
based criterion for model fit that is unit free. We also show how changing the model-fit inclusion
threshold affects the precision of synthetic control estimates by changing the shape of the sampling
distribution.

In all, we recommend: 1) using the same model selection procedure for both target and placebo
products; 2) using a unit-free measure to evaluate model fit; 3) discarding both potential target
series and placebo series that do poorly on a pre-specified threshold of model fit; 4) incorporating a
rolling-origin cross-validation procedure to determine optimal weights, which helps guard against
over-fitting and likely improves out-of-sample prediction; 5) reporting synthetic control weights
as the average contribution to the synthetic prediction rather than as a numeric coefficient to better
compare the influence of variables with different magnitudes; 6) using a unit-free measure of
the treatment effect estimate to compare estimated treatment effects to the placebo distribution;
and 7) reporting the minimum treatment effect size for a given significance level that the placebo
distribution used for inference would consider statistically different than zero.

This paper also makes an empirical contribution to the literature on the effects of marijuana
legalization. Specifically, we examine how the legalization of recreational marijuana in Colorado

has affected the sales of alcohol and over-the-counter pain medication. The data for our analysis



come from a large retail scanner database. We estimate treatment effects by comparing observed
sales to a counterfactual synthetic time series for narrowly defined groups of products. The setting
is complex because product-level sales data are detailed and highly variable. In addition, the
scanner data allows for an extremely large donor pool containing both the focal products (alcohol
and painkillers) and non-focal products (e.g., toilet paper and soda) sold in other states. The set of
donor products is so large that traditional synthetic control methods are infeasible. This large set of
candidate comparison groups also creates a huge pool of possible placebo products, which seems
desirable for statistical inference, but also makes model selection for each placebo analysis more
challenging. The incorporation of lasso regressions into the synthetic group construction alleviates
both of these issues, allowing for a large donor pool and automating model selection. We find no
statistically significant evidence that recreational marijuana laws affect the sale of over-the-counter
pain relievers in Colorado. In contrast, we find evidence that recreational marijuana legalization
reduces alcohol sales. The strongest evidence suggests that recreational marijuana laws reduce
consumption of alcoholic beverages that have both lower total cost to purchase and lower cost per
gram of alcohol (i.e., that are cheap and strong).

Our paper proceeds as follows. Section 2 provides conceptual motivation for synthetic con-
trols and discusses identification assumptions. Section 3 outlines the procedure used in traditional
synthetic controls as well as the lasso extension used in our analysis. Section 4 introduces our
construction of the average treatment effect, discusses statistical inference, and outlines other rec-
ommendations and quality control issues. Section 5 presents our application, including descrip-
tions of marijuana policy and related research, the retail scanner data used in our analysis, and our

results. Section 6 concludes.

2 Model

The synthetic control method is a way of analyzing data using a Comparative Interrupted Time
Series (CITS) research design (Shadish et al., 2002). In a CITS, a time series of outcomes is
observed for multiple units. None of the units is exposed to treatment in the early time periods,
and one or more units is exposed to treatment after a known “interruption” date. The loose idea is
that we may be able to infer something about the treatment effect by comparing the behavior of the
treated units to that of the comparison units, before and after the former are exposed to treatment.
The most common way to analyze data from a CITS is to perform a difference in difference (DID)
comparison. In practice, researchers often go further and estimate the DID comparison using a
two-way fixed effects regression model. These DID approaches invoke strong assumptions about
common trends across groups. The synthetic control methodology is an alternative way to analyze

data from a CITS and is the most valuable in situations where the assumptions required for the



DID and two-way fixed effects approaches are not credible.

2.1 Notation

Use s =0...S to index the units of analysis. In our application the units are product-state sales,
such as ounces of wine sold in Indiana or packages of razor blades sold in Texas. In other settings,
the units might be the same outcome or product across geographical territories (e.g., states or
countries). In general, each s € S is either a donor unit or treated unit. For simplicity, suppose
there is a single treated unit, denoted by s = 0, and a number of untreated units, each denoted by
ans > 0. Letr =1...T index time periods, which are weeks in our application. Next, assume that
treatment exposure occurs in period Ty + 1. Finally, set Dy = 1]t > Ty] X 1[s = 0] to be a binary
variable equal to 1 if unit s is exposed to treatment in period 7.

Let y(0)y and y(1) represent potential outcomes that record the outcome of unit s in period ¢
under the control and treatment conditions. In our application, y(0), is the quantity sold in product-
state s during period ¢ in the absence of a recreational marijuana law, and y(1)s, is the quantity sold
in the same product-state under the recreational marijuana law. The difference between the two
is By = y(1)sr — ¥(0)s, which is the causal effect of treatment on unit s at time ¢. The realized
outcome is yg; = y(0)s + Dy B, However, this introduces a natural identification problem because
untreated outcomes are not observable for the treated unit following exposure to treatment. That
is, after period Ty, we are only able to observe values of y(1)o, for the treated unit.

The basic goal of the synthetic control strategy is to estimate values of y(0)o, in the post-
treatment time periods. With those counterfactual estimates in hand, it is possible to estimate f
for the post-treatment periods t > Tp. Often the focus will be on multi-period average treatment
effects rather period-specific estimates. For example, the average treatment effect on the treated
unit (ATT) over the entire post-treatment period is ATT (Tp+ 1,T) = (TTIO—I) ZZ:TO 11 Bor-

2.2 What is a synthetic control group?

A synthetic control is a weighted average of outcomes from a collection of candidate untreated
control units. Suppose that x; = (yy,...,ys;) is the 1 x S vector of the outcomes that prevailed
in each of the candidate comparison units at time . Let ® = (nl,...,nS)T be a S x 1 vector of

weights. A synthetic control group for the outcome of the treated unit is:
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The definition a synthetic control group is straightforward. A basic problem is that there are an
infinite number of ways to form a synthetic comparison unit from a set of candidate comparison
units. For example, when setting 7, = % for each s, the synthetic control is simply the average
outcome in the donor pool. Weighting each donor unit equally is an arbitrary choice, and in most
settings would likely produce a poor estimate of the counterfactual time series of interest. Assign-
ing a smaller weight to some donor units and a larger weight to other units might provide a better
estimate of the counterfactual time series. But on what basis should we assign different weights
to different donor units? The heart of any synthetic control study is the procedure for determining
exactly what weights to use. However, before we discuss different strategies for assigning weights,
we first examine the conditions under which a proposed synthetic control will provide a consistent

estimate of the counterfactual time series.

2.3 What are the identifying assumptions?

Synthetic control groups are essentially an extrapolation based on the assumption that cross-
sectional correlations between the treated and donor units during the pre-treatment period would
have remained the same in the post-treatment time period had it not been for the treatment. As
such, synthetic control studies assume that a synthetic control group closely matching the treated
time series during pre-treatment would continue to be a close match for the untreated potential
outcome of the treated unit post-treatment. But under what conditions is this claim likely to hold?

To help answer this question, we follow Abadie et al. (2010) and specify an interactive fixed
effects model of the potential outcomes. The model is very flexible and allows for situations with
complex unit-specific time trends that would create problems for strategies based on difference in
difference and two-way fixed effects regressions. We use the model to define and explain the two
key assumptions required for the synthetic control methodology to identify causal effects. The first
assumption is a conditional independence assumption familiar from the literature on propensity
score matching designs. The second assumption is that there are no “dormant factors” in the pre-

period that become active during the post-period.

2.4 Interactive fixed effects

In an interactive fixed effects model, the untreated potential outcomes are generated by:

y(o)st - 6l O+ Ey (2)



In the model, &; represents a 1 x K vector of unmeasured variables, which may change over time but
do not vary across groups. @ is a K x 1 vector of group-specific coefficients on the unmeasured
variables in §. The coefficients may vary across groups, but do not change over time. & is a
residual error term that represent exogenous sources of variation in the untreated outcome.

The model provides a flexible way of thinking about how units might evolve according to a
common trend, and situations under which a common trend assumption might fail. For example,
in the special case where & = [1 ¥ and o = [ 1]7, the model simplifies to yy (0) = 65 + % + &,
which is the familiar two-way fixed effects model. More generally, the model allows for time
trends to vary across units when units have different coefficients on the vector of common factors.

The goal of a synthetic control study is closely related to studies based on covariate matching.
If the outcome of the treated unit is y(0)o; = & & + &y, then the task is to scour the donor pool
for comparison units with values of ¢ that are a close match for 0. Direct matching on the a-
parameters is not feasible because o is unobserved in practice. But the model suggests that two

time series with a close match on the history of y(0),must be a close match on .

24.1 Conditional independence assumption

The first core assumption in synthetic control studies is that treatment exposure is statistically
independent of the untreated potential outcome, conditional on the unit-specific coefficients, 0.
This assumption is the same one that motivates studies based on propensity score matching and

regression adjustment. Formally, the conditional independence assumption (CIA) implies that:
yst(o) A1 Dy ’ O 3)

Conditional mean independence is a slightly stronger form of the CIA that may be easier to under-
stand in many applications. Conditional mean independence occurs when the population average
potential outcome does not depend on treatment status among units with the same @, that is, when
E(ys(0)|ots,Dst = 1) = E(ys(0)| s, Dy = 0). The CIA can also be expressed as a restriction on
the residual error term: E[gy |0, Dy = 1] = E[€y|0ts, Dsy = 0].

The CIA implies that if we can observe the vector o for each unit in the study population, then
we can build a comparison group for the treated unit by selecting donor units with o values that
are the same as Q. It is a strong assumption. It means that among units with the same value as
the o vector, treatment is as good as randomly assigned, and that the two units should follow the
same time trends, with differences arising only because of idiosyncratic and independent random
shocks represented by &;. An implication is that the only reason why two units should follow
systematically different trends is because they have different values for «; it is this implication

that motivates forming matches on the pre-treatment outcome history.



What are the implications of the CIA for applied researchers? One is that it may be useful to
ask whether a structure like the interactive fixed effects model, in which treatment is exogenous
conditional on the a-coefficients, is a plausible way of thinking about the treated unit and the donor
pool. The assumption may be more plausible in settings where the donor pool consists of outcomes
that likely respond to a similar collection of time-varying common factors, even if the responses to
some of these factors are muted for some units and amplified for others. If treatment is correlated
with these factors, or if the procedure matches on some feature other than the underlying factor
structure (e.g. statistical noise), then a synthetic control estimate risks being unidentified.

The prospect of overfitting is an important practical concern for identification. The idea is
that by forming matches on the observed outcome history, researchers can implicitly construct
a comparison group that matches the treated unit on the structural o-coefficients. However, the
observed values of y(0)y are generated by both the & ¢ and the idiosyncratic errors, €. Synthetic
control methods are akin to matching on covariates that are measured with error (Ben-Michael
et al., 2018). Concerns of overfitting are most severe for small samples, short pre-treatment time
periods, and settings where the error variance of the model is large relative to its structural variance.
In general, synthetic control studies should be based on long pre-periods, when the relative share
of variance explained by & is large.

The CIA 1is not directly testable. To assess the credibility of the CIA and to guard against con-
cerns of overfitting, we recommend several implementation strategies and supplementary analy-
ses. First, researchers should use a cross-validation procedure when determining synthetic control
weights to guard against overfitting. We describe one possible approach in more detail in Sec-
tion 3.2.1. We also recommend performing an event-study analysis on the pre-treatment difference
in fit. The difference should lack pre-trends and be centered around zero. Finally, match quality

should be based on a pre-specified and unit-free measure of fit in the pre-treatment period.

2.4.2 No dormant factors assumption

The interactive fixed effects model implies that outcomes for each unit respond to changes in &,
a 1 x K vector of time-varying covariates. Researchers usually know neither the identity nor the
number of variables contained in &. Nevertheless, the logic of the model is that the combination
of these common time-varying factors with unit-specific coefficients is responsible for the trend of
each unit over time.

Let Jp be the Ty x K matrix of pre-treatment values of the unmeasured common factors. Here,
the 1" row of 8p is equal to &, and there is a row for each pre-treatment time period from ¢ = 1...T.
In their analysis of the statistical properties of the synthetic control design, Abadie et al. (2010)
require the assumption that 87 8p is an invertable matrix. This restriction may seem somewhat

opaque, but it is the second key assumption required for causal identification in synthetic con-



trol studies. Roughly speaking, it means that none of the time-varying common factors from the
structural model are perfectly multicollinear during the pre-treatment time period.

One interpretation is that synthetic control designs work as long as all elements of & that
vary independently during the post-treatment time period also vary independently during the pre-
treatment period. That is, none of the time-varying common factors are “dormant” during the
pre-treatment period and then “wake up” during the post-treatment period. The intuition for the
no-dormant-factors assumption is simple: the variation in pre-treatment outcomes only contains
information about «, the coefficients on time-varying factors that actually change during the pre-
period. If a time-varying factor is dormant in the pre-period, then it will not be possible to sepa-
rately identify two units with different coefficients on that factor. If that same factor begins to vary
during the post-period, then the two groups may begin to diverge for reasons that have nothing to
do with the effect of the treatment.

The no-dormant-factors assumption is not directly testable. Because of this it is important to
understand the kinds of conceptual arguments and supplementary analysis researchers can use to
assess the credibility of this assumption. One concern is that some units may adopt new policies or
experience novel/unique economic or social events. In principle, these time-varying shocks may
always have been part of the data-generating process for each unit. That is, each unit has always
had a coefficient for a given shock, such as the adoption of “new policy x.” However, when a
unit has never previously experienced a particular shock, there is no information in the historical
record to uncover how that unit responds to the change. Thus, applied researchers should be on the
lookout for events that occur in the post-treatment period that do not have much precedent in the
pre-treatment data.

More broadly, it may be the case that the vector of time-varying factors in the structural model
may consist of high-frequency factors that change over short periods of time and low-frequency
factors that change very rarely or very slowly. Low-frequency factors may be a threat to the no-
dormant-factors assumption if they happen to change during the post-period and not in the pre-
period. For example, a presidential election season might be a low-frequency factor in a study
based on weekly time series data observed for a three-year pre-period and a three-year post-period.
If there is an election year in the post-period and not in the pre-period and the outcome responds
to the electoral cycle, then a longer pre-period might be required.

In addition to careful reasoning about the likely elements of the time-varying factors in the
structural models, we recommend using only donor and placebo units that seem to plausibly depend
on the same collection of common factors and where no known violations of the dormant factors
have occurred. For example, in our setting we exclude all products from states, such as Oregon,

that legalized recreational marijuana in the period after Colorado’s legalization.



3 Choosing synthetic control groups

3.1 Classical synthetic control weights

Abadie et al. (2010) (ADH) developed the original and mostly widely used method of constructing
a synthetic control group.! Their empirical goal was to estimate the effects of a California tobacco
control policy implemented in 1988. The outcome of interest was cigarette sales per capita, mea-
sured annually at the state level from 1970 to 2000. The donor pool of comparison units consisted
of cigarette sales in other states and the District of Columbia. Following our notation above, yo,
would be cigarette sales in California in period ¢, and x; = (y1s,...,ys0;) Would be the donor pool
of candidate control outcomes in period . As in Equation 1, a synthetic control group is formed
by applying a set of fixed weights to the donor pool.

This method uses two types of pre-treatment data to construct the weights for each donor unit.
The first type is the set of time series for the treated unit and the donor pool, y, for s € 0...S. The
second type is a set of statistics of interest on which the researcher desires balance between the
treated and synthetic unit. These statistics must be available for every donor unit, but need not be
time series data. The ADH method finds a single, fixed weight for each donor unit that is applied
to both the donor time series outcomes and the corresponding statistics of interest for each donor.
The two types of data are not equally important in determining synthetic control weights. The
method finds a second set of weights, called importance weights, that trade off the importance of
balance between the treated unit and synthetic series, and the importance of balance between each
statistic of interest and each synthetic analogue. In practice, the fit of the synthetic unit compared
to the treated unit usually receives the majority of the weight.

These statistics of interest for the treated unit are denoted by Zj, which is an L x 1 vector when
there are L statistics of interest. In the original ADH example, seven such statistics were included,
such as average log GDP per capita and cigarette prices. Analogous statistics for each donor state
are contained by Z¢, which is an L X S matrix in which each column represents a donor unit and
each row contains a different statistic of interest. Thus Zy — Zc® is a L x 1 vector of differences in
pre-treatment statistics between the treatment group and the synthetic control defined by the § x 1
vector of weights, @. ADH summarize the vector of differences with a single summary discrepancy
score, H = \/(Zy — Zc®)TV (Zy — Zcw), where V is the M x M matrix of importance weights. The
importance weights provide a way to penalize baseline treatment vs synthetic control discrepancies

differently for each statistic. Given any choice of importance weights, V, the classical synthetic
control estimator chooses @ (donor weights) to minimize H, subject to the restriction that all of the

donor weights are non-negative and the weights sum to one across all donors. With donor weights

ISee Alberto Abadie (2020) for an overview of the traditional synthetic control method as well as recent extensions.
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in hand, the synthetic control is formed as in Equation 1.

ADH propose choosing V to minimize the mean square prediction error of the synthetic control
during the pre-treatment period. Suppose that (V') is the H — minimizing vector of donor weights
when the importance weight matrix is set to V. Then the classical synthetic control donor weights

are:

Ty
e . 2
Osypn, = O(V™) = arg ming Z(y()t —x o) |. 4)
=1
This method is the standard way of choosing synthetic control group weights in applied re-
search. However, it is complex and imposes restrictions that are not always easy to interpret. For
example, what are the advantages and disadvantages of requiring the weights to be non-negative

and to sum to one across donor units?

3.2 Synthetic control using lasso (SCUL)

One alternative method for choosing synthetic control weights is a simple regression framework.
For example, we could choose synthetic control weights by implementing an ordinary least squares
regression on only pre-treatment data, choosing weights that minimize the sum of squared differ-

ences between the pre-treatment treated time series and the synthetic control group time series:

Ty
Bors = arg ming | Y (yor — X% ) )]

=1
Here, the weights are simply the coefficients that arise from a regression of outcomes for the treated
unit on the outcomes from each of the comparison units using only the t = 1...Ty observations
from the pre-treatment period. With the coefficients in hand, the synthetic control group is the
predicted value from the regression for each period. In post-treatment time periods, the predicted
values represent estimates of the counterfactual outcome based on the pre-treatment cross-sectional
partial correlations between treated unit outcomes and each donor pool outcome. If the policy does
induce a treatment effect on the outcomes, then the connection between treated outcomes and donor
unit outcomes should change in the post-treatment period. That pattern will be measurable as an
emerging difference between observed outcomes in the treated unit and the synthetic control series.
Although it is familiar and intuitive, the OLS method may not be ideal for choosing synthetic
control weights. It may overfit the pre-treatment outcome data by emphasizing idiosyncratic cor-

relations that are not a part of the true data-generating process. In that case, the synthetic control
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may have poor out-of-sample predictive performance. Another limitation is that the OLS estima-
tor does not provide a unique set of weights in cases where there are more comparison units than
pre-treatment observations (i.e., when Ty < S).

An alternative approach is to choose synthetic control weights using a penalized regression

method, such as the lasso. A lasso regression chooses synthetic control weights to solve:

Ty
Wjasso = Arg Ming 21 (Yor — xtw)z + Ao (6)

—
The lasso objective function consists of the same squared prediction error as OLS, but with an
additional penalty that rises with the complexity of the vector of weights. In the expression, ||
is the sum of the absolute values of the coefficients associated with each candidate control series.
The penalty means that coefficients that are large in an unconstrained OLS regression shrink toward
zero. Coefficients that are relatively small may shrink all the way to zero. Since some coefficients
are set to zero, the lasso is able to estimate coefficients that minimize the penalized sum of squares
even when the number of independent variables exceeds the number of observations. In addition,
the regression framework relaxes the restriction that weights must be non-negative and sum to one.
It is straightforward, for example, to add an intercept to the model by including a comparison unit

that is simply equal to a constant in every period.

3.2.1 Cross-validation

A key choice parameter in the lasso regression method is the penalty parameter, which is repre-
sented by A in Equation 6. As A increases, each weight in @y, will attenuate and the set of
donors with non-zero weight will become more sparse as many weights are driven to zero. At
one extreme, the penalty parameter could be so large that every weight is set to zero. At the other
extreme, the penalty parameter could be set to zero, which would simply be the OLS estimator.
Every choice of A in between these extremes will result in a different set of unique weights. For
each lasso regression, a number of A choices are considered in a grid from zero to the smallest
value of A, which forces every weight to be zero.

If the goal of the regression is to maximize in-sample fit, then the A that minimizes the root-
mean square difference between the actual data and the synthetic series will be chosen from the set
of candidate penalty parameters. However, maximizing in-sample fit almost certainly over-fits the
model to the data and likely results in a prediction that would perform poorly out of sample. Since
the goal of synthetic control studies is to estimate treatment effects following a treatment, our goal

is to create a prediction that performs well out of sample. In the SCUL procedure, we select our
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optimal lambda by using rolling-origin cross-validation, a procedure that rewards out-of-sample
prediction and minimizes issues related to auto-correlation.?

Cross-validation is a simple procedure where a dataset is partitioned into multiple subsets that
include training data and test data; multiple analyses are performed on the training data; and the
optimal analysis is determined using the test data. In our setting, lasso regressions across a grid of
penalty parameters are performed for each subset of training data. The series of optimal weights
is stored for each candidate penalty parameter. The test data are then used to evaluate which set of
weights (i.e. which penalty parameter) produces the best out-of-sample prediction. Importantly, all
data used in the cross-validation procedure (i.e., both the training and test data) must be from the
pre-treatment period. This is because our goal is to create a synthetic time series that represents the
counterfactual as if no treatment had occurred. In principle, a similar cross-validation procedure
could be used to select optimal donor weights in the traditional ADH synthetic control method.

The most common approaches to cross-validation work by excluding randomly selected obser-
vations or blocks of observations. However, we are not interested in finding a model that performs
well at back forecasting or interpolating the time series between two points in time. The goal of our
synthetic control strategy is to make out-of-sample forecasts for a time series. To pursue this goal,
we use a cross-validation procedure in which the hold-out data always come from time periods
after the training data in calendar time. This guards against an overfit synthetic control estimator
that only performs well when it is able to use future information to forecast past events.

For example, in our application, our goal is to create a synthetic control that extends 165 weeks
into the post-treatment time period.> Accordingly, we use a cross-validation procedure in which
the test data is always at least 165 weeks long. To implement the method, we create a sequence
of subsets of the pre-treatment dataset. Each of the individual datasets in the sequence covers a
progressively longer time period. To demonstrate, let k = 1... K index the datasets in the sequence.
The first dataset (k = 1) covers the period from January 2006 to May 2009. Each subsequent dataset
adds one additional week of data until the Kth dataset containing all of the pre-treatment data up
to October 2009. The final dataset stops at October 2009 because that is the latest data after which
there are still 165 weeks of pre-treatment data left for the out-of-sample test. Constructing the
sequence in this way means that we are able to use a total of K = 27 datasets for cross-validation
purposes.* We present a visual example of this procedure in Figure 1.

We select the median penalty parameter from the set of optimal A penalty parameters that

2A similar method has been proposed by Kellogg et al. (2020). In general this type of method can be thought of
as a type of model averaging designed to reduce overfitting and the influence of noise (Athey et al., 2019). Other
smoothing or averaging procedures could perform similar functions (Amjad et al., 2018).

3This is the number of weeks from the date of recreational marijuana legalization by voter referendum in Colorado
until the last week of data. That is, it is the maximum post-treatment time in our dataset.

“Because the cross-validation procedure is iterative, variation in each donor series is required in each set of training
data for it to be separately identified from the intercept.
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minimize the mean squared error for the test data in each cross-validation run. We perform the
same cross-validation procedure for every outcome and placebo series used in our analysis. In
other words, the procedure we use to choose the lasso penalty is fixed across our entire analysis,
but the specific penalty is allowed to vary across each outcome variable. Once we have chosen
the A penalty parameter for a given time series, we fit a lasso regression using data from the entire
pre-period. The coefficients from that regression are then used as weights to construct the synthetic

control for that target unit.

3.3 Interpretation of synthetic control weights

Neither the traditional ADH synthetic control weights nor the weights from the SCUL procedure
can be directly interpreted as the share of the synthetic prediction composed by each donor series.
The ADH weights are constrained to sum to one across the donor units. Weights therefore only
represent the fraction of the total weight that is given to a particular donor series; they do not reflect
the size and variability of the outcome for each unit across time periods. The SCUL weights, which
are lasso regression coefficients, are not constrained to sum to one and are not naturally interpreted
as the share given to a particular donor series.

In both methods, the fraction of the synthetic prediction a given donor unit is responsible for
changes with the value of the donor unit across time. Suppose, for example, that there are two
donor series, A and B, observed in two periods, 1 and 2, and each unit receives a weight equal
to % The donor values for the first time period are ys,1 = 10 and yg; = 1. The donor values for

the second time period are y4» = 1 and yp, = 10. The resulting synthetic prediction is yj = 5.5

1
223% — 91% of the

synthetic prediction. In period 2, unit B represents 91% of the synthetic prediction. Despite each

in period 1 and y5 = 5.5 in period 2. In period 1, unit A represents 100 x

donor weight being 50%, neither unit contributes 50% to the synthetic unit in either period.
Applied researchers often like to understand the relative importance of each donor unit to the
synthetic control estimation strategy. Weight shares are one way to help gain such understanding.
In cases where outcomes vary substantially over time, it may be useful to present information on
both the synthetic control weights and on each unit’s share of the synthetic prediction in a selection

of time periods. We give an example of this approach in the empirical section of the paper.

3.4 Evaluating synthetic control fit

There is no guarantee that the lasso regressions (or any other approach) can find a weighted mixture
of donor units that closely mimics the treated unit during the pre-period. Therefore, researchers
need a practical method of deciding whether a proposed synthetic control is “good enough” for

proceeding with the analysis.
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The existing literature on synthetic control estimation proposes a variety of methods for eval-
uating pre-period fit. But the focus is usually on deciding whether synthetic controls produced
for placebo outcomes are of such low quality that they should be excluded from use in statistical
inference. Methods for determining whether the synthetic control for the focal treatment unit is
of sufficient quality appear to be entirely informal. For example, Abadie et al. (2010) do not ex-
plain how they decided that the synthetic control for California was good enough to justify their
subsequent analysis. However, when they consider making statistical inferences based on placebo
distributions, they report placebo distributions under alternative admissibility rules. In particular,
they show the four placebo sampling distributions: one with all available placebos and then three
restricted sets of placebos. The restricted distributions consider only placebos with a pre-period
mean square prediction error (MSPE) that is less than 20 times, 5 times, and 2 times the pre-period
prediction error observed for the treated unit. Cavallo et al. (2013) go further by limiting inference
to placebos with an MSPE that is as good (or better) than the MSPE observed for the treated unit.

There is logic to these methods. However, they rely on the performance of the synthetic control
for the treated unit to guide quality control for the placebos. These ad hoc procedures do not
provide an objective standard that researchers can use to determine the quality of a synthetic control
for the treatment unit itself. In practice, most researchers likely judge quality by visually inspecting
the graph of the realized outcome and the synthetic control in the pre-period. We draw on the cross-
sectional matching literature to guide our assessment of the quality of a proposed synthetic control
for any given outcome. In matching studies, researchers often assess covariate balance before and
after matching using the Cohen’s D statistic, which is simply the standardized mean difference in
a baseline covariate between the treatment and control group.

One rule of thumb is that a covariate is out of balance if the Cohen’s D statistic is greater
than .25, which means that the imbalance between the groups is more than a quarter of a standard
deviation for a particular variable (Ho et al., 2007; King and Zeng, 2006; Cochran, 1968). The
specific choice of a Cohen’s D threshold is arbitrary in most applications; in general, the smaller
the discrepancy the better. However, the Cohen’s D statistic is a unit-free, standardized metric
that is comparable across different variables. The current standard in the literature is to measure
correspondence using the mean square prediction error (MSPE) across the pre-treatment periods.
Unfortunately, the units of an MSPE depend on the specific outcome variable and sample of data
under analysis. Comparing an MSPE across very different outcome variables is uninformative; it
would be meaningless to choose a single numeric MSPE standard across many different dependent
variables.

We apply a modified version of the Cohen’s D to evaluate pre-period fit. Specifically, we

let o5 = \/ Tio ZtTi](ys, —95)? be the standard deviation of outcome s during the pre-treatment
period. The pre-treatment average Cohen’s D statistic for a proposed synthetic control is Dy =
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Tio tTi 1 |y“c;sy:’| We compute Dj for each synthetic control candidate in our study. If Dy > 0.25,
we do not report a synthetic control estimate of the effect of the marijuana law on that outcome.
We apply the same standard to the placebo products we use to conduct statistical inference. We
describe the consequences of different Cohen’s D inclusion thresholds for statistical precision and

inference in Section 4.

3.5 Synthetic control, extrapolation, and convex hulls

Abadie et al. (2015) describe a different regression-based strategy for estimating the weights re-
quired to form a synthetic control group. Doudchenko and Imbens (2017) study several different
ways of constructing synthetic control weights, including a strategy based on elastic net regres-
sion that is similar to the lasso approach we pursue in this paper. Similarly, Arkhangelsky et al.
(2018) combine a regression based difference-in-differences strategy with synthetic controls to
form weights. Abadie et al. (2010, 2015) argue that a key limitation of regression strategies is that
they allow for negative weights that can facilitate extrapolation outside the support of the range
of data in the donor pool. By requiring weights that are non-negative and sum to one, the Abadie
et al. (2010) method limits the search for a good synthetic control to the subset of possible syn-
thetic controls that can be formed as a convex combination of the donor units. This means that the
value of the synthetic control at any pre-period time point must lie within the range of outcomes
experienced by the donor units in the pre-period.

Protection from extrapolation is a desirable property, but the convex hull restriction is not a
requirement for identification; simply because a counterfactual estimate is not extrapolated does
not mean it is well identified. Convex weight restrictions allow for any amount of interpolation, no
matter how extreme, and for no extrapolation, no matter how minor. Extreme interpolation can be
just as undesireable as extreme extrapolation (King and Zeng, 2006; Kellogg et al., 2020).

Consider the two examples depicted in Figure 2. In Panel A, there are two potential synthetic
control estimates: one (the blue square) lies close to other points, but is just outside of the convex
hull. The other (the orange circle) lies within the convex hull, but in a region where there is no other
data. Despite the blue square being more representative of the data, it would not be valid a synthetic
control in the classic ADH method because it is extrapolated; the orange circle, meanwhile, would
be considered valid despite the extreme interpolation needed to construct it. Similarly, Panel B
displays time series from two groups of donor pools, one with a mean of five and another with
a mean of negative five. Despite there being no data mean a mean of zero, the target time series
in orange would be considered a valid synthetic control because it lies between these two groups.
Moreover, if either donor group was to be removed, the target series would no longer be within the

convex hull.
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In some circumstances the convex hull restriction can even prevent the traditional synthetic
control procedure from selecting a perfect donor series (Powell, 2019). With non-negative weights
that sum to one, there is no way for the synthetic control outcome to be larger than the largest donor
outcome or smaller than the smaller donor outcome. In addition there is no way for a synthetic
control weight that is positive to gain information from two series that are counter-cyclical.

For example, imagine a classical difference in difference study in which the states have com-
mon time trends but different intercepts. Further suppose that there is only one treated state, which
is also the state with the highest intercept. An extreme version of this case is depicted in Figure 3,
Panels A and C. In this setting, it would be impossible to find a convex combination of donor states
that provides a close match to the treated unit. Allowing for unrestricted weights — as our lasso
regression does — can solve the problem by “extrapolating” outside the convex hull established by
the pre-period outcomes in the donor states. This example is not contrived. Many studies (includ-
ing this one) examine outcomes that often scale with the state population. If the treated state has
a very large population (e.g., California) or a very small population (e.g., Wyoming) then there
is a good chance that the outcome will lie beyond or near the boundary of the convex hull. In
some applications, researchers sidestep this problem by rescaling the outcome variable to reflect
outcomes per capita. This amounts to using non-convex weights on the original outcome variable,
which undermines the original goal of avoiding extrapolation outside the convex hull.

Another scenario that creates problems for the restricted weight method arises when the treated
unit is negatively correlated with some or all donor units. For simplicity, suppose that the treated
unit follows a linear time trend with a slope of &. And suppose further that one donor unit follows
a slope of —a, while the rest following idiosyncratic random paths. A visual representation of this
case is depicted in Figure 3, Panels B and D. With non-negative weights that sum to one, it will
be impossible to match on the perfect donor unit with the appropriate weight. This is an extreme
example, but the idea that two time series might be negatively correlated is not unrealistic. The
pattern of seasonality could be different in some geographical areas than it is in others. Two finan-
cial assets could be negatively correlated. And indeed, the sales of substitutes might be negatively
correlated with one another. Is extracting information from negatively correlated data obviously
worse than extracting information from positively correlated data? It is not clear why this would
be the case.

The lasso method we use in this paper does not restrict the weights to be non-negative or
sum to one. Our model also allows for an intercept and coefficients on each of the donor units
that serve as independent variables. Each of these parameters could be positive or negative, and
the coefficients are not required to sum to one.” In the regression framework we pursue in this

paper, large intercepts and coefficients can allow the synthetic control to take on a value that lies

>The same is true of the elastic net regression approach described in Doudchenko and Imbens (2017).
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outside the range of outcomes observed in the donor pool. The estimated coefficient (weight) on
a negatively correlated donor unit will simply be a negative number. This seems entirely natural
when viewed through the lens of a regression model, even though it may seem odd in the context
of a weighted average.

The concept of the convex hull is most theoretically appealing when the untreated donor series
are the same focal variable and are in the same scale and units as the treated target series. This is
the case in most applications of the traditional ADH method. However, synthetic control methods
do not require that the donor pool be composed of exactly the same variable or that the variable
be in the same units as the target time series. For instance, in the original ADH method cigarette
sales in states other than California are used to predict counterfactual cigarette sales in California.
However, one could imagine including the sales of cigars or (if studying a similar question in
a modern setting) e-cigarette vaping devices in other states as a predictor of California cigarette
sales. It is possible that donor variables that differ from the focal time series may better capture the
underlying factors contributing to the time series variation and produce a better out-of-sample fit.
As the set of potential donor pool variables grows larger and more distinct from the focal product,
the concern that the predicted synthetic value be within the common numeric support of the donor

pool holds less appeal.

4 Treatment effect estimation and inference

Once the counterfactual synthetic control time series is estimated, computing period-specific treat-
ment effects is straightforward. To compactly summarize the results, we consider multi-period
average treatment effects rather than the treatment effect for each post-treatment time period. For
example, the average treatment effect for the treated group for the entire post-treatment period is
ATT(To+1,T) po = m ZtT:qu (vst — ). In principle, one could compute an average treat-
ment effect for any post-treatment period of interest. For example, in our empirical application,
we consider both the average treatment effect for the entire post-treatment period and the average
treatment effect in each year following treatment.

To perform statistical inference on our ATT estimates, we construct a rank-based, two-sided
p-value using randomization inference (Cavallo et al., 2013; Dube and Zipperer, 2015). We com-
pare the absolute value of the standardized ATT estimate to the absolute value of the standardized
ATT estimate from a number of placebo series. The estimates from the placebo distribution serve
as the null distribution that assumes no treatment effect. In our setting, we use the same units com-
pose both our donor pool and candidate placebo time series. In practice, however, the donor and
placebo pools need not overlap. We limit the target time series considered, and placebo time series

used for inference, to those that have synthetic control estimates that fit the data reasonably well
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during the pre-treatment period. We standardize using the pre-treatment period standard deviation
for each respective time series, so that the respective ATT estimates are unit-free and comparable.
We construct a two-sided p-value by comparing the rank of the absolute value of the standard-
ized treatment effect for the target series against the absolute value of the estimated standardized
pseudo-treatment effect for each untreated unit. The p-value is simply the percentile of the rank.
For smaller placebo pools, it may make sense to report a bounded p-value. For example, if there
are one treated unit and 49 placebos, then a rank of 2 out of 50 represents a p-value of between .02
and .04

To make the analysis manageable and coherent, we have attempted to impose a study design
that is consistent across outcomes, and that provides a credible platform for statistical inference.
That is, we have applied the same model selection procedure to each placebo. For example, we do
not include any series as potential donors if they are from the same state as the focal product; we
do this for identification purposes. Thus when constructing synthetic predictions for each series
in the placebo pool, we ensure that an adaptable version of this restriction was put in place when
computing each synthetic control. Ensuring that the process is similar minimizes the chance of
accidental bias creeping into our analysis. Again in our application, the inclusion of in-state series
may result in a better fit between the synthetic control group and the time series data. If the
differential inclusion of in-state donor units resulted in better fit—and thus smaller pseudo-ATT
estimates—for the placebo analyses, then this would bias our p-values toward zero. This is because
our p-values are constructed by comparing relative magnitudes of target ATT estimates to placebo
pseudo-ATT estimates.

Along a similar vein, we use—and recommend that others consider using—a pre-specified,
unit-free threshold for model fit that equally applies to target variables of interest and each can-
didate placebo series. Our choice for that threshold is a pre-treatment Cohen’s D of 0.25, but
this need not be the only metric or threshold used. What is important is that this metric not be
directly tied to the Cohen’s D of the target series. Other work in the literature enforces similar
model fit restrictions on the placebo pool. However, the threshold is often tied to the mean-squared
prediction error of the target variable. Under the reasonable assumption that synthetic predictions
with relatively worse pre-treatment fit are also likely to have relatively worse post-treatment fit, the
difference between the actual and synthetic series for the target variable will be be biased toward
being larger than the differences in the surviving placebo pool. This biases p-values toward zero.
Moreover, when root mean squared error is used as a measure of fit, this additionally penalizes
candidate placebo series that have larger nominal variance.

Restrictions on placebo series that are selected for inference can have a large effect on inference
itself. Tighter Cohen’s D restrictions will result in fewer placebo series contributing to the estimate

of the null distribution, but the surviving series will—by construction—have a smaller difference
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between actual and synthetic predictions. If those series with better pre-treatment fit also have
better fit post-treatment, then the null distribution from a tighter Cohen’s D should be more compact
than the null distribution from a more relaxed Cohen’s D. A more compact null distribution means
that the rejection region is larger, allowing smaller treatment effect estimates to be considered
statistically different than zero. This does not, however, mean that the ideal Cohen’s D is zero. As
the Cohen’s D restriction becomes more binding, fewer placebo series survive, and fewer target
series survive as well. Thus there is a trade-off between the quality of model-fit and the size of
the surviving placebo pool and set of target time series fit for study. In Section 5.5, we discuss
this trade-off for our own application and present the null distribution under various Cohen’s D

thresholds in Figure 7.

S Application: The effect of recreational marijuana legaliza-

tion on alcohol and painkiller sales

Marijuana possession and consumption is illegal under federal law. Nevertheless, a number of
states have recently adopted medical and recreational marijuana laws that expand legal access to
marijuana. Medical marijuana laws allow people with qualifying health conditions to consume
marijuana (ProCon, 2018a). Recreational marijuana laws allows people to use marijuana without
qualifying conditions (ProCon, 2018b). Over thirty states have adopted medical marijuana laws
and ten have approved marijuana for recreational use. To date, no state has legalized recreational
marijuana without first approving medical marijuana.

In a 2012 statewide election, Colorado voters approved a ballot initiative to amend the state
constitution legalizing recreational marijuana use for adults. The initiative passed with 55% of
the vote, and it made Colorado the first recreational marijuana state. Over the next year, the
state developed regulations governing the consumption, production, and distribution of marijuana.
Starting in December of 2012, it became legal to possess home-grown marijuana in Colorado. In
January of 2014, licensed facilities began selling recreational marijuana.

Our empirical application focuses on the effects of recreational marijuana adoption in Col-
orado. We limit the study to Coloardo in part because focusing on a single treatment and a single
treated unit keeps the key econometric and methodological problems in clear view. Colorado
also has the longest post-treatment time series of any recreational marijuana state. The long post-
treatment time series allows us to study substitution patterns more credibly. In addition, Colorado’s
medical marijuana status does not change over our study period (January 2006 to December 2015),
alleviating concerns related to multiple treatment effects. Four other states voted to adopt recre-

ational marijuana policies during this time period: Oregon (2014), Alaska (2014), Washington
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(2012), and DC (2014). We exclude these states from our entire analysis.

5.1 Marijuana legalization and marijuana use

The empirical goal of our analysis is to measure the causal effects of Colorado’s recreational mar-
ijuana law on the sale of alcohol and over-the-counter pain medications. Recreational marijuana
laws might affect sales of other psychoactive substances if they are complements or substitutes for
marijuana. This suggests that a first order question is whether recreational marijuana laws have any
effect on marijuana consumption. If marijuana use does not change following legalization, it would
be unreasonable to assume that our analysis could uncover resulting changes in sales of other psy-
choactive substances. To this end, Hollingsworth et al. (2020) show that recreational marijuana
adoption increased the prevalence of past year use by 15 percent for younger adults and 25 percent
for adults over age 25. In particular, they find that recreational adoption increases marijuana use as
soon as possession and home cultivation are legal, and that access to dispensaries further increases
marijuana use. These findings provide justification for the claim that if marijuana use has an effect
on the consumption of other psychoactive substances, then recreational marijuana adoption would

induce a large enough change in marijuana use to plausibly uncover such relationships.

5.2 Marijuana legalization and the use of other substances

The connection between marijuana legalization and the use of other psychoactive substance has
important implications for policies that are designed to mitigate externalities and social harms as-
sociated with drug use. If marijuana consumption produces lower external costs and less harm
than some other drug and the two drugs are substitutes, then legalizing marijuana may produce net
social benefits. Similarly, if marijuana consumption is complementary to other psychoactive sub-
stances, it could be a net harm. Substitution patterns also have fiscal consequences. For example, if
marijuana use crowds out or increases alcohol use, but has a differential tax rate, state tax revenue

could change substantially.

5.2.1 Alcohol

In the lead up to the ballot initiative proposing recreational marijuana legalization, supporters of the
law suggested that legalizing marijuana would be a welfare-improving, harm reduction policy. The
premise of the argument was that people would substitute marijuana for alcohol consumption and
that alcohol use has greater external costs than marijuana use (Johnson, 2012). After the measure
passed, a formal marijuana market developed in Colorado’s economy. Alcohol sales increased over

the same period, and some observers suggested that marijuana tourism increased alcohol sales in
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Colorado (Moore, 2014). These anecdotes suggest that legal recreational marijuana may serve
as either a substitute for or complement to gross alcohol sales. Of course, marijuana may be a
substitute for alcohol in some situations and not others, for some alcohol products and not others,
and for some consumers and not others.

Previous research on the connection between marijuana and alcohol has mostly relied on survey
data to measure outcomes. One line of work examines the way measures of marijuana use respond
to changes in alcohol prices, with some finding evidence of substitution (Chaloupka and Laixuthai,
1997; Cameron and Williams, 2001) and others finding evidence of complementarities (Cameron
and Williams, 2001; Pacula, 1998). Another line of work studies how marijuana use responds
to changes in the availability of alcohol, from minimum age restrictions to outright prohibition.
The majority of this research finds that the two are substitutes (Brecher, 1972; Crost and Guerrero,
2012; DiNardo and Lemieux, 2001; Williams et al., 2004). But some research finds no relationship
(Crost and Rees, 2013) and even evidence of complementarity (Yoriik and Yoriik, 2011).

Other work has studied the effects of medical marijuana laws on other substances using a dif-
ference in difference framework. Wen et al. (2015) find that among those over age 21, medical
marijuana laws increase the average number of binge drinking days in the past month, increase
the fraction of people who engaged in both marijuana use and binge drinking in the past month,
and increase the fraction of people who used marijuana and alcohol on the same occasion in the
past month. They do not find any effect of medical marijuana on underage drinking or on the
consumption of other psychoactive substances. Anderson et al. (2013) find that alcohol-related car
accidents and non-hard liquor sales fell after the implementation of medical marijuana, suggesting
that people substituted marijuana for alcohol. Dills et al. (2017) studied decriminalization, medi-
cal marijuana, and recreational expansion of marijuana from 1977 to 2015; they find no evidence
that these policy changes affected measures of alcohol or tobacco use. Pacula et al. (2013, 2015)
attempt to rectify many of the inconsistencies in this literature by exploring policy heterogeneity.
They find that using only a simple binary indicator for any marijuana law masks important under-
lying heterogeneity. When they account for policy heterogeneity, they find that both allowing for
home cultivation and allowing for legal dispensaries are positively associated with binge drinking

and alcohol-related traffic fatalities.

5.2.2 Painkillers

A more recent literature examines the relationship between medical marijuana and prescription
opioid use. To our knowledge, no prior study has evaluated the effects of marijuana liberaliza-
tion on sales of over-the-counter painkillers.Bradford and Bradford (2016, 2017) find that medical
laws reduce prescription among Medicare and Medicaid patients. Bradford and Bradford (2018)

conclude that the decline in prescriptions in the Medicare population is due to a decline in opioids
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prescriptions. Wen and Hockenberry (2018) find decreases in opioid prescribing in the Medi-
caid population following the passage of both medical and recreational marijuana legislation. Shi
(2017) show that these laws are associated with a decrease in opioid-related hospitalizations, and
Bachhuber et al. (2014) find that medical laws have reduced the opioid mortality rate. Powell
et al. (2018) show that access to marijuana dispensaries reduces opioid prescriptions and associ-
ated overdose deaths.We hypothesize that prescription and over-the-counter analgesics will exhibit

similar substitution patterns with marijuana.

5.3 Limitations of survey data

One limitation of most of the existing literature linking marijuana with use of other psychoactive
substances is the reliance on survey questionnaires to measure consumption. Imperfect recall and
concerns about the social desirability of specific answers to sensitive survey questions may be
important sources of bias in survey research on drug and alcohol consumption. In addition, typ-
ical survey questions focus on the quantity and frequency of consumption and do not distinguish
between different types of alcohol products with differential alcohol by volume.

Retail scanner data make it possible to study the exact quantity of alcohol sold in stores, and it
eliminates concerns about whether survey respondents have accurate recall and provide truthful re-
sponses. In addition, scanner data make it possible to study substitution patterns in a more detailed
way than earlier work based on surveys: we examine the sales of multiple types of alcohol (beer,
wine, liquor, and malt liquor) as well as over-the-counter painkillers. Distinguishing between dif-
ferent alcohol types may provide insight into the underlying preferences that determine substitution
patterns. For example, the market for beer likely satisfies more than one underlying consumer pref-
erence. Low-cost, small-volume, and high-alcohol-content beers (like single-serving malt liquor)
are meant for immediate consumption and may be associated with negative externalities gener-
ated by binge drinking and drinking and driving.® In contrast, wine and beer may help satisfy the
demand for social drinking or may have other desirable product attributes beyond low-cost intox-
ication. Marijuana could be a substitute for one alcohol product and a complement to another.
Survey measures that lump heterogeneous goods together risk finding a combined relationship that
is misleading.

Retail scanner data also plays a role in two other recent papers studying marijuana and tobacco
and alcohol consumption patterns. Baggio et al. (2019) study the impact of medical marijuana
legalization on aggregate beer and wine sales using retail scanner data to construct measures of ag-

gregate expenditures on alcohol at the county-month level. They look at total county expenditures

The top panel of Figure Al in the Appendix provides a visual depiction of this theory. The bottom panel shows
that malt liquor is the most likely of the alcohol categories we examine to be a substitute for the intoxicating effects of
recreational marijuana, as it has the lowest cost to purchase and provides the most alcohol per dollar spent.
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in three broad categories of alcohol products: beer, wine, and beer and wine combined. They use a
differences-in-differences design and find that the adoption of state-level medical marijuana laws
reduce aggregate beer and wine sales by 13 percent.

Miller and Seo (2018) also use retail scanner data and administrative data from Washington
State to estimate a structural model of the demand for psychoactive substances. The model is de-
rived using a multistage budgeting approach, which assumes that each consumer first decides how
much to spend on psychoactive substances, then decides how to allocate consumption across broad
classes of substances (e.g., alcohol, tobacco, or marijuana), and then finally decides how to allo-
cate expenditure within each sub-class. Their model allows for three sub-classes of alcohol (wine,
beer, and liquor) and only includes data from Washington state in years following its adoption of a
recreational marijuana law. The estimates from their model imply that a 1% decrease in the price

of marijuana leads to a .16% decrease in alcohol consumption.

5.4 Data

The primary dataset used in our analysis is the Neilsen Retail Scanner Database, which contains
weekly sales information for individual products from a set of food, drug, mass-merchandise,
convenience, and liquor stores. The data are derived from scanners used at the point of sale.
From 2006 to 2015, there were 41,290 unique stores in the Nielsen database. These stores are
not a random sample of all retails stores in the country. However, Nielsen estimates that the
sales recorded in the database represent more than 50% of total sales of all U.S. grocery and drug
stores; there is little reason to believe that the time series of sales outcomes in the Nielsen data
systematically differs from the overall population of stores. To mitigate concerns about changes
in the composition of the Nielsen database, we limit our analysis to data from a balanced panel of
31,678 stores that are included every year.

In the raw data, product sales information is available at the store-week-UPC-code level, and
there are over 2.5 million unique UPC codes observed across all stores in the database. We extract
information on UPC codes from a broad group of alcohol, painkiller, and other products. Neilsen
groups UPC codes into intermediate product categories. We use these designations to select all
beer, wine, hard liquor, malt liquor, and painkiller sales in the database.” After grouping individual
UPC codes into these broader product categories, we compute the total ounces (or pills) sold in
the panel of Nielsen stores in each state and week. To help make the results interpretable, we
focus on total ounces sold in each alcohol product category. For our donor and placebo units, we
create a separate alcohol category for each type based on size: single-serving, small, medium, and

large. In addition to the alcohol and painkiller products that are the focus of our analysis, we also

"Hard liquor is composed of bourbon, whiskey, scotch, gin, vodka, rum, tequila, brandy, and cognac.
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extract data on a number of other donor/placebo goods: eggs, soda, diet soda, tea, coffee, pasta,
lunch meat, shampoo, feminine hygiene products, razor blades, toilet paper, kitty litter, light bulbs,
liquid soap, cigarettes, bar soap, bread, and butter.® For each product type, we group individual
UPC codes into categories and then compute the total ounces or counts of each product class sold
in the panel of Nielsen stores in each state and week. Throughout the analysis, we work with the
natural log of the quantity sold in each week for each product x state unit.

The raw time series data for our products of interest and for a sample of our placebo products
are displayed in Figure 4. The first vertical dashed lines in the figure denotes December 2012,
when the vote to legalize recreational marijuana in Colorado was completed. The second vertical
dash line is January 2014, which is when Colorado’s first recreational dispensaries opened.

The graph gives some idea about the relative range of the donor/placebo pool as well as general
trends in alcohol and painkiller sales in Colorado.The sales of all target products trended upward
throughout the pre-treatment period. There is substantial within-product variation across time that
is attenuated due to the common y-axis. Panel A of Figure 5 displays each target unit time series
and the synthetic control group time series on a separate graph with its own scale. In each of the
graphs in panel A, actual sales for the target unit are shown as a thin black line. The line clearly

demonstrates the substantial seasonality and other within-product sales variation.

5.5 Results

This section presents treatment effect estimates derived using the SCUL procedure. Our target
units are weekly sales of beer, wine, hard liquor, malt liquor, and over-the-counter painkillers
in Colorado. The first order goal was to use the SCUL method to estimate counterfactual sales
for each treated time series using out-of-state sales data. We selected optimal weights using a
rolling-origin cross validation procedure, allowing donor weights to differ for each target product.
We estimate the synthetic counterfactual by multiplying the cross-validated weights by the post-
treatment values from the donor pool. In our main analysis, the post-treatment period begins in
December 2012. However, we also consider the alternative treatment date of January 2014, when

dispensaries first opened.

5.5.1 Treatment effect estimates

In Panel A of Figure 5, both the observed time series and SCUL counterfactual are displayed for
each target series. The SCUL method appears to perform quite well in the pre-treatment period,

providing a close match to the variation in each target series. However, given the volatile nature

8Eggs, tea, feminine hygiene products, razor blades, toilet paper, light bulbs, cigarettes, and bar soap are measured
as counts of individual units. The other products are measured in ounces.
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of each time series, fit is difficult to visually ascertain. To make pre-treatment fit easier to observe,
we plot the difference between the observed data and the SCUL counterfactual prediction in Panel
B. In addition, we report a measure of pre-treatment fit, the Cohen’s D, in Table 1. The Cohen’s
D statistic in the table is the average weekly difference between the observed values for each unit
and the synthetic prediction, expressed in standard deviation units. Each target unit has a measure
of fit below our pre-specified threshold of 0.25, with the Cohen’s D for the malt liquor series being
the closest to this threshold at 0.22.

For each time series, a clear deviation between the observed outcomes and the synthetic coun-
terfactual begins at the start of 2014. The post-treatment gap between the realized sales and
the counterfactual is positive for painkillers and negative for each alcohol series. The average
deviation—reported in percent—across the entire post-treatment period and in each year is re-
ported in Table 1 Panel A. Following recreational legalization in 2012, we find a 3% increase in
the sales of over-the-counter painkillers and, depending on the product, between a 7 and 40% re-
duction in alcohol sales. The largest changes in sales begin in 2014, when recreational dispensaries

first opened.

5.5.2 Statistical inference

To understand if these treatment effect estimates are statistically significant, we compare them to
the pseudo-treatment effects we estimated for many untreated placebo units. Placebo units are
weekly product sales of alcohol, painkillers, and other goods from untreated states. The distri-
bution of pseudo-treatment effect estimates represents the null distribution of no treatment effect.
Importantly, the placebo analysis captures how the fit of the SCUL counterfactual deteriorates over
time, even when there is no treatment effect. To be considered sufficiently rare to be statistically
significant, any actual treatment effect must be large enough in magnitude to overcome this deteri-
orating fit.

For the sake of clarity, we outline results from the SCUL procedure using a single treated
unit, sales of hard liquor in Colorado. Figure 6 displays the difference between actual ounces of
hard liquor sold each week in Colorado and the SCUL prediction in green. The pre-treatment
difference between the two series is small and centered around zero. In the figure, the gray lines
show the pseuedo differences between each placebo and its synthetic control. The graph only
includes placebo lines that survived the Cohen’s D screen by having a pre-treatment Cohen’s D
less than 0.25. As discussed, this same criterion is applied to both the placebos and the target units.
The placebo lines in the graph are drawn with some transparency so that the darker areas have a
greater density of placebo units than lighter spaces. This shading highlights the deterioration of the
counterfactual fit across time and gives the appearance of smoke. As such, we refer to this style of

plot as a “smoke plot.”

26



Under the smoke plot, we report the relative contribution [0-1] and the lasso coefficient for
each donor unit to the synthetic prediction. Recall that relative contribution is a function of both
the lasso coefficients and the donor pool values in a given time period. Since this can change across
time, we report the relative contribution for both the first and last time period. In this application,
relative contributions appear to be stable across time. The single most important donor unit for
hard liquor is single-serving beer sales from Tennessee, followed closely by the intercept, which is
a measure of average pre-treatment hard liquor sales in Colorado. The majority of donor units that
receive non-zero weight are alcohol or liquor products. Given that the donor pool contains mostly
non-alcoholic products, this was by no means guaranteed and indicates that the synthetic control
procedure may be selecting on underlying market factors rather than idiosyncratic statistical noise.

The smoke plot sheds light on the intuition underlying both our decision to examine only
those goods with an adequate pre-treatment fit and our randomization-inference-based approach
for statistical inference. Consider the pre-treatment period, from 2006 until possession became
legal in November of 2012. Here we can see that the difference between the target and synthetic
units (in green) fits about as well as the average placebo product. While there are occasional large
deviations, the average pre-treatment difference is centered around zero, with a small standard
deviation.

As the training period of our data ends before legalization, the SCUL estimates are not updated
to include information after November 2012. Thus, as time since November 2012 increases, model
fit for each time series worsens. Since the placebo goods should not be impacted by treatment, they
help us determine how we can expect model to worsen over time in the absence of treatment. In
the smoke plot, this can be seen as the “dissipating smoke” following initial treatment.

Since statistical inference essentially compares the magnitude of the treatment effect estimate
to the cloud of placebo estimates, placebo units with poor model fit will increase the spread of the
null distribution. To mitigate the spread of the null distribution, we remove any placebo units with
poor pre-treatment fit. However, post-treatment fit worsens with time even for those placebo units
with satisfactory pre-treatment fit. This deterioration implies that statistical power will worsen as
time from initial treatment increases: as the placebo distribution grows wider, the minimum effect
size needed to be considered significant at a given level also grows.

Using placebo data from our application, Figure 7 demonstrates this concept more clearly. Each
row in the figure displays the distribution of pseudo-treatment effects defined over different blocks
of post-treatment time: the first three rows show placebo distributions from the average effect over
the first year, second year, and third year after legalization (2013, 2014, and 2015). The fourth row
displays null distributions for average treatment effects taken over the entire post-treatment period.
Each column shows the placebo distribution derived from a different pre-treatment Cohen’s D

exclusion criteria for placebo units: the first column has no exclusion threshold, the second has an
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exclusion threshold of 0.25, and the third has an exclusion criteria of 0.10. As time since treatment
increases, the null distribution becomes noticeably wider. This makes it harder to reject the null
hypothesis for effects of forecasts further into the future. Similarly, more restrictive Cohen’s D
thresholds yield more compact null distributions. In general, a more compact null distribution is
desirable because wider null distributions are less able to differentiate small treatment effects from
statistical noise. Thus, synthetic control methods have the greatest power to detect small effect
sizes in the time periods closest to treatment, and when the synthetic control method also provides
a satisfactory fit for the placebo pool used to compose the null distribution.

Maximizing statistical precision in these ways is not without trade-offs. Dynamic treatment
effects that grow over time may not be large enough to be detectable in the periods immediately
following treatment. Using a smaller Cohen’s D threshold can improve precision by eliminating
noisy placebo units, but this also may eliminate target units that do not meet the pre-treatment fit
quality standard. Consider both time since treatment and the Cohen’s D threshold for our exam-
ple. The largest treatment effects do not begin until 2014 when the power to detect effects is the
weakest. And the most compact null distribution is generated by choosing a Cohen’s D threshold
of 0.10, which would eliminate every target product of interest from consideration.

To help make sense of these issues, we recommend determining the minimum treatment effect
size for each time block and Cohen’s D threshold that would be statistically different than zero
for a given significance level. This may help researchers decide if a particular study has enough
statistical power to be useful. In our application, with a Cohen’s D threshold of 0.25 , the standard-
ized average treatment effect during the first post-treatment year would need to be at least 0.45 in
absolute value in order to reject the null at the 10% level. In contrast, the third year effect size
would need to be at least 1.05 in order to reject the null at the at the 10% level. The minimum
treatment effect size more than doubles from year one to year three. If a treatment effect is not re-
alized immediately or is dynamic, then the deteriorating model fit may present an insurmountable
hurdle for statistical inference. It is possible that the fit of the synthetic prediction will deteriorate
at a faster rate than the growth of the treatment effect, resulting in a minimum treatment effect size
far larger than any reasonably expected treatment effect could be.

In Table 1 Panel A, we present both estimated average treatment effects (in percent) for dif-
ferent time periods and rank-based, randomization-inference p-values in parentheses. Only the
treatment effect estimates for quantity of malt liquor sold are statistically different from zero at
the 10% level, although all treatment effect estimates for alcohol are negative, and their respective
p-values are mostly below 0.4. Sales of over-the-counter painkillers appear largely unaffected by
recreational marijuana adoption, with positive treatment effect estimates that are not statistically
distinguishable from zero. Since we are examining multiple products, we also consider two joint

tests of whether recreational legalization has any effect across different product groupings.
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The first joint test measures if there is any significant effect across all of the products. We
perform this test by summing the absolute value of five randomly chosen standardized treatment
effect estimates from the placebo pool and comparing this sum to the analogous measure for our
target variables in each post-treatment time period. The p-value is the fraction of cases in which
that the sum from our five target products is larger than the sum drawn from the placebo pool. The
tests cannot reject the possibility that there is no effect of recreational marijuana legalization on
any product. This method, however, does not reward similar products for having the same sign,
and it is reasonable to expect that sales of alcohol will all either be substitutes or complements. We
construct a second joint test for alcohol products that is based upon the absolute value of the sum
of the treatment effect estimates rather than the sum of the absolute values. Moving the absolute
value penalizes coefficients of different signs, since opposite signed effects of the same magnitude
will cancel out. When we use this second joint test, we find that there is a statistically significant

joint effect of marijuana legalization on alcohol sales, which is driven by the years 2014 and 2015.

5.5.3 Using dispensary openings as an alternative beginning of treatment

In Colorado, recreational dispensaries did not open until 2014. Prior research has found that recre-
ational dispensary access increases marijuana use (Hollingsworth et al., 2020), and that medical
dispensary access affects downstream substitution of prescription painkillers (Powell et al., 2018).
Consistent with this logic, neither the visual data presented in Figure 5 nor the analytic results in
Table 1 systematically show large deviations until 2014. It may also be the case that people who
are likely to substitute alcohol consumption for marijuana use would not do so until a convenient
and legal mechanism such as a dispensary is available. Moreover, if dispensary openings cause
most of the average treatment effect, forcing the synthetic control’s out-of-sample period to begin
in 2013 will widen the placebo distribution relative to an estimator that assumes treatment begins
in 2014.

Thus, we consider an alternative analysis where our post-treatment period begins in January of
2014. The results of this procedure are reported in Table 1 Panel B. With the exception of malt
liquor, all treatment effect estimates are similar to those estimated in our previous analysis. The
Cohen’s D on malt liquor increased substantially from 0.22 to 0.32 and is above our pre-determined
threshold for model fit. Therefore we do not consider this outcome as a viable candidate for our
procedure. A key difference in this analysis is that the null distribution is more compact, meaning
that despite having similar treatment effect estimates, p-values in this analysis tend to be lower.
Results indicate that alcohol sales as a whole decreased following legalization and that this change

is statistically significant at the 5% level.
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6 Conclusion

Synthetic control methods represent an increasingly popular strategy for estimating counterfactual
treatment effects. Unfortunately, the core assumptions of the design are somewhat opaque and it is
often hard to assess their credibility in social science settings. In addition, synthetic control studies
require researchers to make a variety of implementation decisions, and the technical literature
offers little practical guidance on how to make these choices.

In this paper, we try to articulate the practical meaning of the core synthetic control assump-
tions. We outline the problems, discretionary choices, and conceptual challenges associated with
synthetic controls in a way that we hope will be useful for other applied researchers. Where it
seems prudent, we offer advice about how researchers should handle key issues that are apt to
apply to many different synthetic control studies. We argue that using donor units from a wide
range of variable types can contribute to improved identification of underlying factors driving the
pre-treatment data generating process for the treated unit. We also develop an extension of the
synthetic controls estimator that exploits machine learning to automate model selection, relaxes
convexity restrictions, and allows for a high-dimensional donor pool. This approach may be useful
in many settings and we provide code and a online statistical package to help others use the method
or parts of the method in their own work.

Finally, we apply our recommendations and technique to a policy-relevant question: what is the
relationship between recreational marijuana legalization and consumption of alcohol and over-the-
counter painkillers? Taken as a whole, our results indicate that recreational marijuana legalization
decreases alcohol sales and does not affect the sales of over-the-counter painkillers. This suggests
that marijuana and alcohol are likely to be substitutes and—surprisingly—that marijuana and over-

the-counter painkillers are not.
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Figure 1: SCUL procedure uses rolling k-fold cross-validation to select optimal donor weights,
avoiding over-fitting and auto-correllation.
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Note: This figure presents a visual depiction of the rolling-origin cross-validation procedure we use to determine
the penalty parameter (and therefore synthetic control weights) in our procedure. We only use data from the pre-
treatment time period, which in our setting runs for 356 weeks from January 2006 until November 2012. The goal
of our application is to create a synthetic control that extends from the date of legalization until the last week of our
data, which is 165 weeks. Thus, we use a cross-validation procedure in which the test data is always at least 165
weeks long. For each cross-validation run, we conduct a number of lasso regressions with different penalty parameters
using the training data. Training data always come before the test data to avoid using future values to predict past
levels. Training and test data are also in contiguous blocks, this forces the method to extrapolate and avoids overfitting
(e.g. interpolation). In each run, we choose the penalty parameter that has offers the smallest mean square prediction
error for the respective test data. Each subsequent cross-validation run adds one additional week of data until no
longer possible. In our setting, we are able to preform a total of 27 runs. We then choose the median lambda penalty
parameter from these 27 procedures as our cross-validated penalty parameter. For more details see Section 3.2.1. Code
for this figure was adapted from Section 3.4 of Hyndman and Athanasopoulos (2020).
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Figure 2: Restrictions on weights in traditional synthetic control methods prevent any extrapolation
and allow for any interpolation, no matter how extreme.
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Figure 3: Restrictions on weights prevent the traditional synthetic control methods (SCM) from se-
lecting the optimal donor series in some cases. The synthetic control using lasso (SCUL) procedure
preforms well in these settings.
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Note: In each case a perfect donor series exists for the target series. All other donor series are unrelated to the target
series. In case 1, the target series lies outside of the convex hull of the donor pool with the optimal donor series shifted
down by four units. In case 2, the target series has a perfect mirror in the donor pool; that is, it is the negative of
the target series. In both cases, the traditional synthetic control method (SCM) cannot select the perfect donor. In
case 1, this is because traditional weights cannot extrapolate beyond the support of the donor pool. In case 2, this is
because negative weights are not allowed. Our method, the synthetic control using lasso (SCUL), relaxes these two
restrictions and selects the perfect donor series in both cases. These cases are not contrived. It is easy to imagine a
target series being outside of the convex hull of the donor pool (e.g., U.S. GDP compared to other countries) or two
series exhibiting negative correlation (e.g., a price and consumption series or two financial assets).
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Figure 4: Sales of five target products in Colorado across time compared to sales from random
sample of donor pool.
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Note: All time series in this figure are the natural log of weekly sales for different state-products. The five target
products from Colorado we study are labeled and in color. A random sample of the donor pool—sales of products
from states other than Colorado—are displayed with transparency. Darker regions have greater density. We also
display the maximum and minimum donor value in each week. The first vertical dashed lines in the figure denotes
December 2012, when the vote to legalize recreational marijuana in Colorado was completed. The second vertical
dash line is January 2014, which is when Colorado’s first recreational dispensaries opened. The graph gives some
idea about the relative range of the donor/placebo pool as well as general trends in alcohol and painkiller sales in
Colorado. The sales of all target products trended upward throughout the pre-treatment period. There is substantial
within-product variation across time that is attenuated due to the common y-axis.
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Figure 5: Observed weekly sales data compared to SCUL counterfactual prediction.
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Note: Panel A displays the natural log of weekly sales for each target product in Colorado as well as the SCUL counterfactual prediction of that value. In each
graph actual sales for the target unit are shown as a thinner black line and the prediction is shown as the wider line in color. Panel B plots the difference between
actual sales and the SCUL counterfactual prediction.
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Figure 6: Smoke plot and donor contribution to synthetic control estimates for Colorado hard
liquor.
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Note: In the top-panel, the wide green line displays the difference between actual hard liquor sales
each week in Colorado and the SCUL counterfactual prediction as if recreational marijuana had not
been legalized. The pre-treatment difference between the two series is small and centered around
zero. The gray lines depict the differences between each placebo and its synthetic control assuming
those the pre-treatment Cohen’s D for that placebo is less than 0.25. The placebo differences are
displayed with transparency so that the darker areas have greater density. In the bottom-panel, we
report the relative contribution [0-1] and the lasso coefficient for each donor unit to the synthetic
prediction. The relative contribution is a function of both the lasso coefficients and the donor pool
values in a given time period.
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Figure 7: Both time since treatment and Cohen’s-D affect the shape of the null distribution, which
changes the threshold for statistical significance.
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Note: Each null distribution displayed relates to a different post-treatment time period and different Cohen’s D inclu-
sion threshold. The blocks of post-treatment time vary by row, with the first three rows showing null distributions over
the first (2013), second (2014), and third (2015) year after legalization. The fourth row displays null distributions for
average treatment effects taken over the entire post-treatment period. Each column shows null distributions derived
from varying pre-treatment Cohen’s D exclusion criteria for placebo units: the first column has no exclusion threshold,
the second has an exclusion threshold of 0.25, and the third has an exclusion criteria of 0.10. The range of effect sizes
(in standard deviation units) that would be considered statistically different from zero at the 10% level are displayed
in red for each null distribution. This figure demonstrates that synthetic control methods have the greatest power to
detect small effect sizes in the time periods closest to treatment, and when the synthetic control method also provides
a satisfactory fit for the placebo pool used to compose the null distribution.
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Table 1: The effect of recreational marijuana legalization on sales (0-100%) by of alcohol and
over-the-counter painkillers.

Panel A: Treatment begins in 2013 following passage of the recreational marijuana law.

Pre-treatment fit First Year Second Year Third Year All Post Treatment

2006-2012 2013 2014 2015 2013-2015
Pain pills 0.15 0.47 3.85 5.96 3.27
(0.77) (0.26) (0.20) (0.28)
Beer 0.15 -3.44 —-6.12 -11.49 -6.82
(0.33) (0.35) 0.21) (0.28)
Wine 0.12 -0.28 -9.72 -5.48 —4.89
(0.97) (0.42) (0.73) (0.63)
Hard liquor 0.18 -3.29 -19.44 -17.38 -12.82
(0.49) (0.10) (0.20) (0.18)
Malt liquor, 0-400z. 0.22 -24.76 -38.58 -62.75 —41.09
(0.10) (0.14) (0.09) (0.10)
p-value from joint test of any effect 0.57 0.16 0.19 0.21
p-value from joint test of any alcohol effect 0.15 0.05 0.08 0.06

Panel B: Treatment begins in 2014 following opening of recreational marijuana dispensaries.

Pre-treatment fit First Year Second Year All Post Treatment
2006-2013 2014 2015 2014-2015

Pain pills, OTC 0.14 2.32 3.44 2.87

(0.18) (0.24) (0.19)
Beer 0.21 -4.31 -7.93 -6.10

0.21) (0.19) 0.17)
Wine 0.1 -10.90 -10.19 -10.55

(0.16) (0.39) (0.25)
Hard liquor 0.14 -17.50 -16.75 -17.13

(0.03) (0.12) (0.06)
Malt liquor, 0-400z. 0.32
p-value from joint test of any effect 0.04 0.17 0.08
p-value from joint test of any alcohol effect 0.03 0.08 0.06

Note: In 2013, possession and home cultivation of recreational marijuana were legal. Dispensaries, physical locations where
recreational marijuana can be legally purchased, opened in 2014. Two-sided randomization inference rank based p-values
in parentheses. The p-value from the joint test of any effect is an exact test of the sum of the absolute values of effects from
five randomly chosen donor products with a Cohen’s D of less than 0.25. The p-value from the joint test of any alcohol
effect is an exact test of the absolute value of the sum of effects from four randomly chosen donor products with a Cohen’s
D of less than 0.25. In Panel B, malt liquor is not included in the joint tests and does not have a p-value, since the pre-
period Cohen’s D for this product is above our threshold for a good fit (0.25). The joint test is adjusted for this exclusion.
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Figure A1l: Malt liquor is the most likely alcohol to be purchased for intoxication, making it the
most likely substitute for recreational marijuana intoxication.
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Note: Top panel is a visual representation of the discussion outlined in Section 5.3. Bottom panel presents data allowing evaluation of which alcohol
category is most likely to be purchased for intoxication. Each point displays the average cost to purchase a product against the average cost per
gram of alcohol contained in the product. Products composing these averages are taken from a random sample (weighted by annual expenditures)
of alcohol products observed in the Nielsen retail scanner data. For each sampled product, authors collected data on alcohol by volume. This was
combined with price and volume data from Nielsen to create a measure for average cost per gram of alcohol = W . 95% confidence
intervals for the mean of each attribute are reported by brackets.
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