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Abstract: The canonical difference-in-differences (DD) estimator contains two time periods, “pre” 
and “post”, and two groups, “treatment” and “control”. Most DD applications, however, exploit 
variation across groups of units that receive treatment at different times. This paper shows that the 
general estimator equals a weighted average of all possible two-group/two-period DD estimators 
in the data. This defines the DD estimand and identifying assumption, a generalization of common 
trends. I discuss how to interpret DD estimates and propose a new balance test. I show how to 
decompose the difference between two specifications, and provide a new analysis of models that 
include time-varying controls.  
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Difference-in-differences (DD) is both the most common and the oldest quasi-experimental 

research design, dating back to Snow’s (1855) analysis of a London cholera outbreak.1 A DD 

estimate is the difference between the change in outcomes before and after a treatment (difference 

one) in a treatment versus control group (difference two): �𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 − 𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑃𝑃𝑇𝑇𝑇𝑇 � − �𝑦𝑦𝐶𝐶𝑃𝑃𝐶𝐶𝑇𝑇𝑇𝑇𝑃𝑃𝐶𝐶
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 −

𝑦𝑦𝐶𝐶𝑃𝑃𝐶𝐶𝑇𝑇𝑇𝑇𝑃𝑃𝐶𝐶
𝑃𝑃𝑇𝑇𝑇𝑇 �. That simple quantity also equals the estimated coefficient on the interaction of a 

treatment group dummy and a post-treatment period dummy in the following regression: 

                          𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛾𝛾 + 𝛾𝛾𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖  .                      (1) 

The elegance of DD makes it clear which comparisons generate the estimate, what leads to bias, 

and how to test the design. The expression in terms of sample means connects the regression to 

potential outcomes and shows that, under a common trends assumption, a two-group/two-period 

(2x2) DD identifies the average treatment effect on the treated. All econometrics textbooks and 

survey articles describe this structure,2 and recent methodological extensions build on it.3  

Most DD applications diverge from this 2x2 set up though because treatments usually occur 

at different times.4 Local governments change policy. Jurisdictions hand down legal rulings. 

Natural disasters strike across seasons. Firms lay off workers. In this case researchers estimate a 

regression with dummies for cross-sectional units (𝛼𝛼𝑖𝑖) and time periods (𝛼𝛼𝑖𝑖), and a treatment 

dummy (𝐷𝐷𝑖𝑖𝑖𝑖): 

                                                    𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖⋅ + 𝛼𝛼⋅𝑖𝑖 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖  .                                                    (2) 

                                                      
1 A search from 2012 forward of nber.org, for example, yields 430 results for “difference-in-differences", 360 for 
“randomization” AND “experiment” AND “trial”, and 277 for “regression discontinuity” OR “regression kink”. 
2 This includes, but is not limited to, Angrist and Krueger (1999), Angrist and Pischke (2009), Heckman, Lalonde, 
and Smith (1999), Meyer (1995), Cameron and Trivedi (2005), Wooldridge (2010). 
3 Inverse propensity score reweighting: Abadie (2005), synthetic control: Abadie, Diamond, and Hainmueller (2010), 
changes-in-changes: Athey and Imbens (2006), quantile treatment effects: Callaway, Li, and Oka (forthcoming). 
4 Half of the 93 DD papers published in 2014/2015 in 5 general interest or field journals had variation in timing. 
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In contrast to our substantial understanding of canonical 2x2 DD, we know relatively little 

about the two-way fixed effects DD when treatment timing varies. We do not know precisely how 

it compares mean outcomes across groups.5 We typically rely on general descriptions of the 

identifying assumption like “interventions must be as good as random, conditional on time and 

group fixed effects” (Bertrand, Duflo, and Mullainathan 2004, p. 250), and consequently lack well-

defined strategies to test the validity of the DD design with timing. We have limited understanding 

of the treatment effect parameter that regression DD identifies. Finally, we often cannot evaluate 

when alternative specifications will work or why they change estimates.6 

This paper shows that the two-way fixed effects DD estimator in (2) is a weighted average 

of all possible 2x2 DD estimators that compare timing groups to each other (the DD 

decomposition). Some use units treated at a particular time as the treatment group and untreated 

units as the control group. Some compare units treated at two different times, using the later-treated 

group as a control before its treatment begins and then the earlier-treated group as a control after 

its treatment begins. The weights on the 2x2 DDs are proportional to group sizes and the variance 

of the treatment dummy in each pair, which is highest for units treated in the middle of the panel. 

I first use this DD decomposition to show that DD estimates a variance-weighted average 

of treatment effect parameters sometimes with “negative weights” (Abraham and Sun 2018, 

Borusyak and Jaravel 2017, de Chaisemartin and D’HaultfŒuille forthcoming).7 When treatment 

                                                      
5 Imai, Kim, and Wang (2018) note “It is well known that the standard DiD estimator is numerically equivalent to the 
linear two-way fixed effects regression estimator if there are two time periods and the treatment is administered to 
some units only in the second time period. Unfortunately, this equivalence result does not generalize to the multi-
period DiD design…Nevertheless, researchers often motivate the use of the two-way fixed effects estimator by 
referring to the DiD design (e.g., Angrist and Pischke, 2009).” 
6 This often leads to sharp disagreements. See Neumark, Salas, and Wascher (2014) on unit-specific linear trends, Lee 
and Solon (2011) on weighting and outcome transformations, and Shore-Sheppard (2009) on age-time fixed effects. 
7Early research in this area made specific observations about stylized specifications with no unit fixed effects (Bitler, 
Gelbach, and Hoynes 2003), or it provided simulation evidence (Meer and West 2013). Recent research on the 
weighting of heterogeneous treatment effects does not provide this intuition. de Chaisemartin and D’HaultfŒuille 
(forthcoming, p 7) and Borusyak and Jaravel (2017, p 10-11) describe these same weights as coming from an auxiliary 
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effects do not change over time, DD yields a variance-weighted average of cross-group treatment 

effects and all weights are positive. Negative weights only arise when effects vary over time. The 

DD decomposition shows why: when already-treated units act as controls, changes in their 

treatment effects over time get subtracted from the DD estimate. This does not imply a failure of 

the design, but it does caution against summarizing time-varying effects with a single-coefficient. 

Next I use the DD decomposition to define “common trends” with timing variation. Each 

2x2 DD relies on pairwise common trends in untreated potential outcomes, and the overall 

identifying assumption is an average of these terms using the variance-based decomposition 

weights. The extent to which a given group’s differential trend biases the overall estimate equals 

the difference between the total weight on 2x2 DDs where it is the treatment group and the total 

weight on 2x2 DDs where it is the control group. The earliest and/or latest treated units have low 

treatment variance, and can get more weight as controls than treatments. In designs without 

untreated units they always do. I construct a balance test derived from the estimator itself that 

improves on existing strategies that test between treated/untreated or earlier/later treated units.  

Finally, I develop simple tools to describe the general DD design and evaluate why 

estimates change across specifications.8 Plotting the 2x2 DDs against their weight displays 

heterogeneity in the estimated components and shows which terms or groups matter most. 

Summing the weights on the timing comparisons versus treated/untreated comparisons quantifies 

“how much” of the variation comes from timing (a common question in practice), and provides 

practical guidance on how well the two-way fixed effects estimator works compared to alternative 

                                                      
regression, noting that “a general characterization of [the weights] does not seem feasible.” Athey and Imbens (2018) 
also decompose the DD estimator and develop design-based inference methods for this setting. Strezhnev (2018) 
expresses �̂�𝛽𝐷𝐷𝐷𝐷 as an unweighted average of DD-type terms across pairs of observations and periods.  
8 These methods can be implemented using the Stata command bacondecomp available on SSC (Goodman-Bacon, 
Goldring, and Nichols 2019). 
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estimators (Abraham and Sun 2018, Borusyak and Jaravel 2017, Callaway and Sant'Anna 2018, 

Imai, Kim, and Wang 2018, Strezhnev 2018, Ben-Michael, Feller, and Rothstein 2019). 

Comparing DD estimates across specifications in a Oaxaca-Blinder-Kitagawa decomposition 

measures how much of the change in the overall estimate comes from the 2x2 DDs (consistent 

with confounding or within-group heterogeneity), the weights (changing estimand), or the 

interaction of the two. Scattering the 2x2 DDs or the weights from different specifications show 

which specific terms drive these differences. I also provide the first detailed analysis of 

specifications with time-varying controls, which can address bias, but also implicitly introduce 

new unintended sources of variation such as comparisons between units with the same treatment 

but different covariates. 

To demonstrate these methods I replicate Stevenson and Wolfers (2006) study of the effect 

of unilateral divorce laws on female suicide rates. The two-way fixed effects estimator suggest 

that unilateral divorce leads to 3 fewer suicides per million women. More than a third of the 

identifying variation comes from treatment timing and the rest comes from comparisons to states 

with no reforms during the sample period. Event-study estimates show that the treatment effects 

vary strongly over time, however, which biases many of the timing comparisons. The DD estimate 

(-3.08) is therefore a misleading summary of the average post-treatment effect (about -5). My 

proposed balance test detects higher per-capita income and male/female sex ratios in reform states, 

in contrast to joint tests across timing groups, which cannot reject the null of balance. Much of the 

sensitivity across specifications comes from changes in weights, or a small number of 2x2 DD’s, 

and need not indicate bias. 

I. THE DIFFERENCE-IN-DIFFERENCES DECOMPOSITION THEOREM 
When units experience treatment at different times, one cannot estimate equation (1) because the 

post-period dummy is not defined for control observations. Nearly all work that exploits variation 
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in treatment timing uses the two-way fixed effects regression in equation (2) (Cameron and Trivedi 

2005 pg. 738). Researchers clearly recognize that differences in when units received treatment 

contribute to identification, but have not been able to describe how these comparisons are made.9 

This section decomposes the two-way fixed effects DD estimator into a weighted average of 

simple 2x2 DD estimators. 

Figure 1 plots a simple data structure that includes treatment timing. Assume a a balanced 

panel dataset with 𝑇𝑇 periods (𝑡𝑡) and 𝑁𝑁 cross-sectional units (𝑖𝑖) that belong to either an untreated 

group, 𝑈𝑈; an early treatment group, 𝑘𝑘, which receives a binary treatment at 𝑡𝑡𝑘𝑘∗; and a late treatment 

group, ℓ, which receives the binary treatment at 𝑡𝑡ℓ∗ > 𝑡𝑡𝑘𝑘∗ .  

Throughout the paper I use “group” or “timing group” to refer to collections of units either 

treated at the same time or not treated. I refer to units that do not receive treatment as “untreated” 

rather than “controls” because, while they obviously act as controls, treated units do, too. 𝑘𝑘 will 

denote an earlier treated group and ℓ will denote a later treated group. Each group’s sample share 

is 𝑛𝑛𝑘𝑘 and the share of time it spends treated is 𝐷𝐷�𝑘𝑘. I use 𝑦𝑦𝑏𝑏
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑎𝑎) to denote the sample mean of 𝑦𝑦𝑖𝑖𝑖𝑖 

for units in group 𝑏𝑏 during group 𝑎𝑎’s post period, [𝑡𝑡𝑎𝑎∗ ,𝑇𝑇]. (𝑦𝑦𝑏𝑏
𝑃𝑃𝑇𝑇𝑇𝑇(𝑎𝑎) is defined similarly.)   

By the Frisch-Waugh theorem (Frisch and Waugh 1933), 𝛽𝛽�
𝐷𝐷𝐷𝐷

 equals the univariate 

regression coefficient between 𝑦𝑦𝑖𝑖𝑖𝑖 and the treatment dummy with unit and time means removed:  

                                                    
𝐶𝐶� (𝑦𝑦𝑖𝑖𝑖𝑖,𝐷𝐷�𝑖𝑖𝑖𝑖)

𝑉𝑉�𝐷𝐷
=

1
𝑁𝑁𝑇𝑇∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷�𝑖𝑖𝑖𝑖

1
𝑁𝑁𝑇𝑇∑ ∑ 𝐷𝐷�𝑖𝑖𝑖𝑖

2
𝑖𝑖𝑖𝑖

  .                                                    (3) 

                                                      
9 Angrist and Pischke (2015), for example, lay out the canonical DD estimator in terms of means, but discuss regression 
DD with timing in general terms only, noting that there is “more than one…experiment” in this setting.  
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I denote grand means by 𝑥𝑥 = 1
𝐶𝐶𝑇𝑇
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , and fixed-effects adjusted variables by 𝑥𝑥�𝑖𝑖𝑖𝑖 = (𝑥𝑥𝑖𝑖𝑖𝑖 −

𝑥𝑥𝑖𝑖) − (𝑥𝑥𝑖𝑖 − 𝑥𝑥). 

The challenge in this setting has been to articulate how estimates of equation (2) compare 

the groups and times depicted in figure 1. We do, however, have clear intuition, for 2x2 designs in 

which one group’s treatment status changes and another’s does not. In the three-group case we 

could form four such designs estimable by equation (1) on subsamples of groups and time periods. 

Figure 2 plots them.  

Panels A and B show that if we consider only one of the two treatment groups, the two-

way fixed effects estimate  reduces to the canonical case comparing a treated to an untreated group: 

                       𝛽𝛽�𝑗𝑗𝑗𝑗
2𝑥𝑥2

≡ �𝑦𝑦𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑗𝑗) − 𝑦𝑦𝑗𝑗

𝑃𝑃𝑇𝑇𝑇𝑇(𝑗𝑗)� − �𝑦𝑦𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑗𝑗) − 𝑦𝑦𝑗𝑗

𝑃𝑃𝑇𝑇𝑇𝑇(𝑗𝑗)�  ,    𝑗𝑗 = 𝑘𝑘, ℓ  .                      (4) 

Note that I use 2x2 to refer to two groups of periods (here 𝑃𝑃𝑇𝑇𝑇𝑇(𝑗𝑗) and 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑗𝑗)) instead of only 

two time periods. If instead there were no untreated units, the two way fixed effects estimator 

would be identified only by the differential treatment timing between groups 𝑘𝑘 and ℓ. For this case, 

panels C and D plot two clear 2x2 DDs based on sub-periods when only one group’s treatment 

status changes. Before 𝑡𝑡ℓ∗, the early units act as the treatment group because their treatment status 

changes, and later units act as controls during their pre-period. We compare outcomes between the 

window when treatment status varies, 𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ), and group 𝑘𝑘’s pre-period, 𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘): 

                                𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

≡  �𝑦𝑦𝑘𝑘
𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘,ℓ) − 𝑦𝑦𝑘𝑘

𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)� − �𝑦𝑦ℓ
𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘,ℓ) − 𝑦𝑦ℓ

𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)�  .                              (5) 

The opposite situation, shown in panel D, arises after 𝑡𝑡𝑘𝑘∗  when the later group changes treatment 

status but the early group does not. Later units act as the treatment group, early units act as controls, 

and we compare average outcomes between the periods 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ) and 𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ): 

                                𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

≡ �𝑦𝑦ℓ
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ) − 𝑦𝑦ℓ

𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘,ℓ)� − �𝑦𝑦𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ) − 𝑦𝑦𝑘𝑘

𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘,ℓ)�  .                             (6) 
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The already-treated units in group 𝑘𝑘 can serve as controls even though they are treated because 

treatment status does not change.  

These simple DDs come from subsamples that relate to the full sample in two specific 

ways. First, each one uses a fraction of all 𝑁𝑁𝑇𝑇 observations. The treated/untreated DDs in (4) use 

two groups and all time periods, so their sample shares are  (𝑛𝑛𝑘𝑘 + 𝑛𝑛𝑗𝑗) and (𝑛𝑛ℓ + 𝑛𝑛𝑗𝑗). The timing 

DDs in (5) and (6) also use two groups and only some time peroids. 𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

 uses group ℓ’s pre-

period so its share is (𝑛𝑛𝑘𝑘 + 𝑛𝑛ℓ)(1− 𝐷𝐷�ℓ), while 𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

 only uses group 𝑘𝑘’s post-period so its share 

is (𝑛𝑛𝑘𝑘 + 𝑛𝑛ℓ)𝐷𝐷�𝑘𝑘.  

Second, each 2x2 DD is identified by how treatment varies in its subsample. The “amount” 

of identifying variation equals the variance of fixed-effects-adjusted 𝐷𝐷𝑖𝑖𝑖𝑖 from its subsample: 

                                                 𝑉𝑉�𝑗𝑗𝑗𝑗𝐷𝐷 ≡ 𝑛𝑛𝑗𝑗𝑗𝑗�1 − 𝑛𝑛𝑗𝑗𝑗𝑗�𝐷𝐷�𝑗𝑗�1 − 𝐷𝐷�𝑗𝑗�,    𝑗𝑗 = 𝑘𝑘, ℓ                                           (7) 

                                               𝑉𝑉�𝑘𝑘ℓ
𝐷𝐷,𝑘𝑘 ≡ 𝑛𝑛𝑘𝑘ℓ(1 − 𝑛𝑛𝑘𝑘ℓ)

𝐷𝐷�𝑘𝑘 − 𝐷𝐷�ℓ
1 − 𝐷𝐷�ℓ

1 − 𝐷𝐷�𝑘𝑘
1 − 𝐷𝐷�ℓ

 ,                                                   (8) 

                                                𝑉𝑉�𝑘𝑘ℓ
𝐷𝐷,ℓ ≡ 𝑛𝑛𝑘𝑘ℓ(1 − 𝑛𝑛𝑘𝑘ℓ)

𝐷𝐷�ℓ
𝐷𝐷�𝑘𝑘

𝐷𝐷�𝑘𝑘 − 𝐷𝐷�ℓ
𝐷𝐷�𝑘𝑘

 ,                                                           (9) 

where 𝑛𝑛𝑎𝑎𝑏𝑏 ≡
𝑛𝑛𝑎𝑎

𝑛𝑛𝑎𝑎+𝑛𝑛𝑏𝑏
 is the relative size of groups in each pair. The first part of each pairwise 

variance measures how concentrated the groups are. If 𝑛𝑛𝑗𝑗𝑗𝑗 equals zero or one the variance goes to 

zero: there is either no treatment or no control group. The second part comes from when the 

treatment occurs in each subsample. The 𝐷𝐷� terms equal the variance of 𝐷𝐷𝑖𝑖𝑖𝑖 in each subsample’s 

treatment group, rescaled by the size of the relevant time window in (8) and (9). If 𝐷𝐷�𝑗𝑗 equals zero 

or one the variance goes to zero: treatment does not vary over time.  
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My central result is that any two-way fixed effects DD estimator is an average of well-

understood 2x2 DD estimators, like those plotted in figure 2, with weights based on subsample 

shares and the variances in (7)-(9): 

Theorem 1. Difference-in-Differences Decomposition Theorem 
Assume that the data contain 𝑘𝑘 = 1, . . . ,𝐾𝐾 groups of units ordered by the time when they receive 
a binary treatment, 𝑡𝑡𝑘𝑘∗ ∈ (1,𝑇𝑇]. There may be one group, 𝑈𝑈, that includes unites that never receives 
treatment or are always treated. The OLS estimate,  𝛽𝛽�

𝐷𝐷𝐷𝐷
, in a two-way fixed-effects regression (2) 

is a weighted average of all possible two-by-two DD estimators. 
 

                      𝛽𝛽�
𝐷𝐷𝐷𝐷

= �𝑠𝑠𝑘𝑘𝑗𝑗
𝑘𝑘≠𝑗𝑗

𝛽𝛽�𝑘𝑘𝑗𝑗
2𝑥𝑥2

+ ���𝑠𝑠𝑘𝑘ℓ𝑘𝑘 𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

+ 𝑠𝑠𝑘𝑘ℓℓ 𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

�
ℓ>𝑘𝑘𝑘𝑘≠𝑗𝑗

 .                         (10𝑎𝑎) 

 
Where the 2x2 DD estimators are: 
 

                          𝛽𝛽�𝑘𝑘𝑗𝑗
2𝑥𝑥2

  ≡ �𝑦𝑦𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑘𝑘) − 𝑦𝑦𝑘𝑘

𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)� − �𝑦𝑦𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑘𝑘) − 𝑦𝑦𝑗𝑗

𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)�  ,                          (10𝑏𝑏)  

                         𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

≡  �𝑦𝑦𝑘𝑘
𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘,ℓ) − 𝑦𝑦𝑘𝑘

𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)� − �𝑦𝑦ℓ
𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘,ℓ) − 𝑦𝑦ℓ

𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)�  ,                       (10𝑐𝑐)  

                         𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

≡ �𝑦𝑦ℓ
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ) − 𝑦𝑦ℓ

𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘,ℓ)� − �𝑦𝑦𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ) − 𝑦𝑦𝑘𝑘

𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘,ℓ)� .                      (10𝑑𝑑)  

 

The weights are: 

                   𝑠𝑠𝑘𝑘𝑗𝑗 =
(𝑛𝑛𝑘𝑘 + 𝑛𝑛𝑗𝑗)2 𝑛𝑛𝑘𝑘𝑗𝑗(1 − 𝑛𝑛𝑘𝑘𝑗𝑗)𝐷𝐷�𝑘𝑘(1 − 𝐷𝐷�𝑘𝑘)�����������������

𝑉𝑉�𝑘𝑘𝑘𝑘
𝐷𝐷

𝑉𝑉�𝐷𝐷
 ,                    (10𝑒𝑒) 

𝑠𝑠𝑘𝑘ℓ𝑘𝑘 =
�(𝑛𝑛𝑘𝑘 + 𝑛𝑛ℓ)(1 − 𝐷𝐷�ℓ)�2 𝑛𝑛𝑘𝑘ℓ(1 − 𝑛𝑛𝑘𝑘ℓ)𝐷𝐷

�𝑘𝑘 − 𝐷𝐷�ℓ
1 − 𝐷𝐷�ℓ

1 − 𝐷𝐷�𝑘𝑘
1 −𝐷𝐷�ℓ

�������������������
𝑉𝑉�𝑘𝑘ℓ
𝐷𝐷,𝑘𝑘

𝑉𝑉�𝐷𝐷
 ,                    (10𝑓𝑓) 

𝑠𝑠𝑘𝑘ℓℓ =     
�(𝑛𝑛𝑘𝑘 + 𝑛𝑛ℓ)𝐷𝐷�𝑘𝑘�

2
𝑛𝑛𝑘𝑘ℓ(1 − 𝑛𝑛𝑘𝑘ℓ)𝐷𝐷

�ℓ
𝐷𝐷�𝑘𝑘

𝐷𝐷�𝑘𝑘 − 𝐷𝐷�ℓ
𝐷𝐷�𝑘𝑘

�����������������
𝑉𝑉�𝑘𝑘ℓ
𝐷𝐷,ℓ

𝑉𝑉�𝐷𝐷
 .                    (10𝑔𝑔) 

 

and  ∑ 𝑠𝑠𝑘𝑘𝑗𝑗𝑘𝑘≠𝑗𝑗 + ∑ ∑ �𝑠𝑠𝑘𝑘ℓ𝑘𝑘 + 𝑠𝑠𝑘𝑘ℓℓ �ℓ>𝑘𝑘𝑘𝑘≠𝑗𝑗 = 1. 
 
Proof: See appendix A. 

Theorem 1 completely describes the sources of identifying variation in a general DD 

estimator and their importance. With 𝐾𝐾 timing groups, one could form 𝐾𝐾2 − 𝐾𝐾 “timing-only” 
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estimates that either compare an earlier- to a later-treated timing group (𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

) or a later- to earlier-

treated timing group (𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

). With an untreated group, one could form 𝐾𝐾 2x2 DDs that compare 

one timing group to the untreated group (𝛽𝛽�𝑘𝑘𝑗𝑗
2𝑥𝑥2

). Therefore, with 𝐾𝐾 timing groups and one untreated 

group, the DD estimator comes from 𝐾𝐾2 distinct 2x2 DDs.  

The weights on each 2x2 DD combine the absolute size of the subsample, the relative size 

of the treatment and control groups in the subsample, and the timing of treatment in the 

subsample.10 The first part is the size of the subsample squared. The second part of each weight is 

the subsample variance from equations (7)-(9). The variance is larger when the two groups are 

closer in size (𝑛𝑛𝑘𝑘𝑗𝑗 ≈ 0.5) and when treatment occurs closer to the middle of the relevant time 

window (𝐷𝐷�𝑘𝑘, 𝐷𝐷
�𝑘𝑘−𝐷𝐷�ℓ
1−𝐷𝐷�ℓ

, or 𝐷𝐷
�ℓ
𝐷𝐷�𝑘𝑘

 are close to 0.5).  

In figure 2, the 2x2 DDs with group 𝑘𝑘 as the treatment group get the most weight. I assume 

equal group sizes so that the weights are completely determined by timing. I set 𝑡𝑡𝑘𝑘∗  and 𝑡𝑡ℓ∗ so that 

𝐷𝐷�𝑘𝑘 = 0.66 and 𝐷𝐷�ℓ = 0.16. For treated/untreated DDs, 𝑠𝑠𝑘𝑘𝑗𝑗 > 𝑠𝑠ℓ𝑗𝑗 because group 𝑘𝑘 is treated closer 

to the middle of the panel than group ℓ and therefore has a higher treatment variance: 

𝐷𝐷�𝑘𝑘(1 −𝐷𝐷�𝑘𝑘) = 0.22 > 0.13 = 𝐷𝐷�ℓ(1 − 𝐷𝐷�ℓ). This is also true for the timing-only 2x2 DDs. Group 

𝑘𝑘’s treatment share within group ℓ’s pre-period is 𝐷𝐷�𝑘𝑘−𝐷𝐷�ℓ
1−𝐷𝐷�ℓ

= 0.66−0.16
0.84 = 0.59, but group ℓ’s pre-

period accounts for 1 −𝐷𝐷�ℓ = 0.84 share of the observations. Group ℓ’s treatment share within 

                                                      
10 Many other least-squares estimators weight heterogeneity this way. A univariate regression coefficient equals an 
average of coefficients in mutually exclusive (and demeaned) subsamples weighted by size and the subsample 𝑥𝑥 -
variance:  

𝛼𝛼� =
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑥𝑥𝑖𝑖 − �̅�𝑥)𝑖𝑖

∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)𝑖𝑖
2 =

∑ (𝑇𝑇 𝑦𝑦 − 𝑦𝑦)(𝑥𝑥 − 𝑥𝑥) + ∑ (𝐵𝐵 𝑦𝑦 − 𝑦𝑦)(𝑥𝑥 − 𝑥𝑥)
∑ (𝑖𝑖 𝑥𝑥 − 𝑥𝑥)2

=
𝑛𝑛𝑇𝑇𝑠𝑠𝑥𝑥𝑥𝑥𝑇𝑇 + 𝑛𝑛𝐵𝐵𝑠𝑠𝑥𝑥𝑥𝑥𝐵𝐵

𝑠𝑠𝑥𝑥𝑥𝑥2
=
𝑛𝑛𝑇𝑇𝑠𝑠𝑥𝑥𝑥𝑥

2,𝑇𝑇

𝑠𝑠𝑥𝑥𝑥𝑥2
𝛼𝛼�𝑇𝑇 +

𝑛𝑛𝐵𝐵𝑠𝑠𝑥𝑥𝑥𝑥
2,𝐵𝐵

𝑠𝑠𝑥𝑥𝑥𝑥2
𝛼𝛼�𝐵𝐵 

Similarly, two-stage least squares uses samples sizes and variances to “efficiently combine alternative Wald estimates” 
(Angrist 1991). Gibbons, Serrato, and Urbancic (2018) show a nearly identical weighting formula for one-way fixed 
effects. Panel data provide another well-known example: a pooled regression coefficients equals a variance-weighted 
average of two distinct estimators that each use less information: the between estimator for subsample means, and the 
within estimator for deviations from subsample means.  
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group 𝑘𝑘’s post-period, on the other hand, is 𝐷𝐷�ℓ
𝐷𝐷�𝑘𝑘

= 0.16
0.66 = 0.24, and group 𝑘𝑘’s post-period accounts 

for 𝐷𝐷�𝑘𝑘 = 0.66 share of the observations. Therefore, 𝑠𝑠𝑘𝑘ℓ𝑘𝑘 > 𝑠𝑠𝑘𝑘ℓℓ  because �̂�𝛽𝑘𝑘ℓ𝑘𝑘  has a higher variance 

from treatment timing alone and it uses more data: (1 − 𝐷𝐷�ℓ)2 𝐷𝐷�𝑘𝑘−𝐷𝐷�ℓ
1−𝐷𝐷�ℓ

1−𝐷𝐷�𝑘𝑘
1−𝐷𝐷�ℓ

= 0.17 > 0.08 =

𝐷𝐷�𝑘𝑘
2 𝐷𝐷�ℓ
𝐷𝐷�𝑘𝑘

𝐷𝐷�𝑘𝑘−𝐷𝐷�ℓ
𝐷𝐷�𝑘𝑘

. Scaling by the overall variance of 𝐷𝐷�𝑖𝑖𝑖𝑖 shows that the weights are 

�𝑠𝑠𝑘𝑘𝑗𝑗, 𝑠𝑠ℓ𝑗𝑗, 𝑠𝑠𝑘𝑘ℓ𝑘𝑘 , 𝑠𝑠𝑘𝑘ℓℓ � = {0.37, 0.22, 0.28, 0.13}. 

Theorem 1 implies that changing the number or spacing of time periods changes the 

weights (in addition to potentially changing the 2x2 DDs). Imagine adding 𝑇𝑇 periods to the end of 

figure 2. In that case, 𝐷𝐷�𝑘𝑘 = 0.83 and 𝐷𝐷�ℓ = 0.58 and group ℓ is treated closer to the middle of the 

panel than group 𝑘𝑘. The weights change to �𝑠𝑠𝑘𝑘𝑗𝑗, 𝑠𝑠ℓ𝑗𝑗, 𝑠𝑠𝑘𝑘ℓ𝑘𝑘 , 𝑠𝑠𝑘𝑘ℓℓ � = {0.25, 0.43, 0.07, 0.25}. 2x2 DDs 

in which group ℓ is the treatment group get twice as much weight in this case; 68 percent with 2𝑇𝑇 

periods versus 35 percent with 𝑇𝑇 periods. Therefore panel length alone could change DD estimates 

substantially even if the 2x2 DDs themselves are constant.  

Theorem 1 also shows how DD compares two treated groups. A two-group “timing-only” 

estimator is itself a weighted average of the 2x2 DDs plotted in panels C and D of figure 2: 

          𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2

≡
(1 − 𝐷𝐷�ℓ)2𝑉𝑉�𝑘𝑘ℓ

𝐷𝐷,𝑘𝑘

(1 − 𝐷𝐷�ℓ)2𝑉𝑉�𝑘𝑘ℓ
𝐷𝐷,𝑘𝑘 + 𝐷𝐷�𝑘𝑘

2𝑉𝑉�𝑘𝑘ℓ
𝐷𝐷,ℓ

�����������������
𝜇𝜇𝑘𝑘ℓ

𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘  +

𝐷𝐷�𝑘𝑘
2𝑉𝑉�𝑘𝑘ℓ

𝐷𝐷,ℓ

(1 − 𝐷𝐷�ℓ)2𝑉𝑉�𝑘𝑘ℓ
𝐷𝐷,𝑘𝑘 + 𝐷𝐷�𝑘𝑘

2𝑉𝑉�𝑘𝑘ℓ
𝐷𝐷,ℓ

�����������������
1−𝜇𝜇𝑘𝑘ℓ

𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

 .         (11) 

Both groups serve as controls for each other during periods when their treatment status does not 

change, and the weight assigned to the 2x2 terms comes from how large is their subsample and 

how large is their treatment variance. In (11), 𝜇𝜇𝑘𝑘ℓ simplifies to 1−𝐷𝐷�𝑘𝑘
1−(𝐷𝐷�𝑘𝑘−𝐷𝐷�ℓ)

, which falls as 𝐷𝐷�𝑘𝑘 gets 
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closer to one (𝑡𝑡𝑘𝑘∗  gets closer to the first time period). In other words, the group treated close to the 

middle of the panel gets more weight. In the three group example 𝜇𝜇𝑘𝑘ℓ = 0.34/0.5 =  0.68.11  

A. Alternative Decompositions 

Alternative algebraic decompositions are possible, but neither match the structure of the two-way 

fixed effects specification in (2) nor yield intuitive weights. Strezhnev (2018, equation 15) 

decomposes 𝛽𝛽�
𝐷𝐷𝐷𝐷

 into an unweighted average of comparisons between all units and all time periods 

so that the weights across types of comparisons (2x2 DDs) are only implicitly defined. Athey and 

Imbens (2018, equation 4.3) decompose 𝛽𝛽�
𝐷𝐷𝐷𝐷

 into terms representing causal effects over different 

time-horizons. My “group-level” decomposition on the other hand yields well-defined intuitive 

weights by grouping 2x2 terms according to the identifying variation (pre/post, treatment/control) 

that unites them. See Appendix F for more details on the relationship between decompositions. 

II. THEORY: WHAT PARAMETER DOES DD IDENTIFY AND UNDER WHAT ASSUMPTIONS? 
Theorem 1 relates the regression DD coefficient to sample averages, which makes it simple to 

analyze its statistical properties by writing �̂�𝛽𝐷𝐷𝐷𝐷 in terms of potential outcomes (Holland 1986, 

Rubin 1974). The outcome is 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖1 +  (1 − 𝐷𝐷𝑖𝑖𝑖𝑖)𝑌𝑌𝑖𝑖𝑖𝑖0, where 𝑌𝑌𝑖𝑖𝑖𝑖1 is unit 𝑖𝑖’s treated outcome at 

time 𝑡𝑡, and 𝑌𝑌𝑖𝑖𝑖𝑖0 is the corresponding untreated outcome. Following Callaway and Sant'Anna (2018, 

p 7) define the ATT for timing group 𝑘𝑘 at time 𝜏𝜏 (the “group-time average treatment effect”): 

𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘(𝜏𝜏) ≡ 𝑇𝑇[𝑌𝑌𝑖𝑖𝑖𝑖1 − 𝑌𝑌𝑖𝑖𝑖𝑖0�𝑘𝑘]. Because regression DD averages outcomes in pre- and post-periods, I 

define the average 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘(𝜏𝜏) in a date range 𝑊𝑊 (with 𝑇𝑇𝑊𝑊 periods): 

                                                      
11 Two recent papers use two-group timing-only estimators. Malkova (2017) studies a maternity benefit policy in the 
Soviet Union and Goodman (2017) studies high school math mandates. Both papers show differences between early 
and late groups before the reform, 𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘), during the period when treatment status differs, 𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ), and in the 
period after both have implemented reforms, 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ). 
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                                               𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘(𝑊𝑊) ≡
1
𝑇𝑇𝑊𝑊

� 𝑇𝑇[𝑌𝑌𝑖𝑖𝑖𝑖1 − 𝑌𝑌𝑖𝑖𝑖𝑖0|𝑘𝑘]
𝑖𝑖∈𝑊𝑊

 .                                          (12) 

In practice, 𝑊𝑊 will represent post-treatment windows that appear in the 2x2 components. Finally, 

define the difference over time in average potential outcomes (treated or untreated) as: 

                           Δ𝑌𝑌𝑘𝑘ℎ(𝑊𝑊1,𝑊𝑊0) ≡
1
𝑇𝑇𝑊𝑊1

� 𝑇𝑇�𝑌𝑌𝑖𝑖𝑖𝑖ℎ�𝑘𝑘�
𝑖𝑖∈𝑊𝑊1

−
1
𝑇𝑇𝑊𝑊0

� 𝑇𝑇�𝑌𝑌𝑖𝑖𝑖𝑖ℎ�𝑘𝑘�
𝑖𝑖∈𝑊𝑊0

,       ℎ = 0,1 .          (13) 

Applying this notation to the 2x2 DDs in equations (4)-(6), adding and subtracting post-period 

counterfactual outcomes for the treatment group yields the familiar result that (the probability limit 

of) each 2x2 DD equals an ATT plus bias from differential trends:  

𝛽𝛽𝑘𝑘𝑗𝑗2𝑥𝑥2     =   𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘(𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑘𝑘)) + �Δ𝑌𝑌𝑘𝑘0(𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑘𝑘),𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)) − Δ𝑌𝑌𝑗𝑗0�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑘𝑘),𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)��     (14𝑎𝑎)    

𝛽𝛽𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘  = 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ)� + �Δ𝑌𝑌𝑘𝑘0(𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ),𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)) − Δ𝑌𝑌ℓ0�𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ),𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)��  (14𝑏𝑏)   

𝛽𝛽𝑘𝑘ℓ
2𝑥𝑥2,ℓ   =   𝑇𝑇𝑇𝑇𝑇𝑇ℓ(𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ)) + �Δ𝑌𝑌ℓ0�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ),𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ)� − Δ𝑌𝑌𝑘𝑘0�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ),𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ)��

− �𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ)� − 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ)�� .                                                       (14𝑐𝑐) 

Note that the definition of common trends in (14a) and (14b) involves only counterfactual 

outcomes, but in (14c) identification of 𝑇𝑇𝑇𝑇𝑇𝑇ℓ(𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ)) involves counterfactual outcomes and 

changes in treatment effects in the already-treated “control group”.  

 Substituting equations (14a)-(14c) into the DD decomposition theorem expresses the 

probability limit of the two-way fixed effects DD estimator (assuming that 𝑇𝑇 is fixed and 𝑁𝑁 grows) 

in terms of potential outcomes and separates the estimand from the identifying assumptions: 

                                          𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝
𝐶𝐶→∞

�̂�𝛽𝐷𝐷𝐷𝐷 = 𝛽𝛽𝐷𝐷𝐷𝐷 =  𝑉𝑉𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑊𝑊𝐶𝐶𝑇𝑇 − Δ𝑇𝑇𝑇𝑇𝑇𝑇 .                                   (15) 

The first term in (15) is the two-way fixed effects DD estimand, which I call the “variance-

weighted average treatment effect on the treated” (VWATT): 



13 
 

        𝑉𝑉𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇 ≡ � 𝜎𝜎𝑘𝑘𝑗𝑗
𝑘𝑘≠𝑗𝑗

𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑘𝑘)�                                                                                        

+ ���𝜎𝜎𝑘𝑘ℓ𝑘𝑘 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ)� + 𝜎𝜎𝑘𝑘ℓℓ 𝑇𝑇𝑇𝑇𝑇𝑇ℓ�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ)��
ℓ>𝑘𝑘𝑘𝑘≠𝑗𝑗

 .                           (15𝑎𝑎) 

The 𝜎𝜎 terms are probability limits of the weights in (10a).12 VWATT is a positively weighted 

average of ATTs for the treatment groups and post-periods across the 2x2 DDs that make up �̂�𝛽𝐷𝐷𝐷𝐷.  

 The second term, which I call “variance-weighted common trends” (VWCT) generalizes 

common trends to a setting with timing variation:  

𝑉𝑉𝑊𝑊𝐶𝐶𝑇𝑇 ≡ � 𝜎𝜎𝑘𝑘𝑗𝑗
𝑘𝑘≠𝑗𝑗

�Δ𝑌𝑌𝑘𝑘0�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑘𝑘),𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)� − Δ𝑌𝑌𝑗𝑗0�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑘𝑘),𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)��                

+ ���𝜎𝜎𝑘𝑘ℓ𝑘𝑘 �Δ𝑌𝑌𝑘𝑘0�𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ),𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)� − Δ𝑌𝑌ℓ0�𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ),𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘)��
ℓ>𝑘𝑘𝑘𝑘≠𝑗𝑗

+ 𝜎𝜎𝑘𝑘ℓℓ �Δ𝑌𝑌ℓ0�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ),𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ)� − Δ𝑌𝑌𝑘𝑘0�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ),𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ)��� .    (15𝑏𝑏) 

Like VWATT, VWCT is also an average of the difference in counterfactual trends between pairs 

of groups and different time periods using the weights from the decomposition theorem. It captures 

the way that differential trends map to bias in (10a). Note that one group’s counterfactual trend 

affects many 2x2 DDs by different amounts and in different directions depending on whether it is 

the treatment or control group. While the mapping from trends to bias in a given 2x2 is clear, this 

result for a design with timing is new. 

The last term in (15) equals a weighted sum of the change in treatment effects within each 

unit’s post-period with respect to another unit’s treatment timing: 

                                                      
12 Note that a DD estimator is not consistent if 𝑇𝑇 gets large because the permanently turned on treatment dummy 
becomes collinear with the unit fixed effects (𝑋𝑋

′𝑋𝑋
𝑇𝑇

 does not converge to a positive definite matrix). Asymptotics with 
respect to 𝑇𝑇 require the time dimension to grow in both directions (see Perron 2006). 
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                Δ𝑇𝑇𝑇𝑇𝑇𝑇 ≡ ��𝜎𝜎𝑘𝑘ℓℓ �𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ)� − 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ)��
ℓ>𝑘𝑘𝑘𝑘≠𝑗𝑗

 .                  (15𝑐𝑐) 

Because already-treated groups sometimes act as controls, the 2x2 estimators in equation (14c) 

subtract average changes in their untreated outcomes and their treatment effects. Of course 

Δ𝑇𝑇𝑇𝑇𝑇𝑇 ≠ 0 only if treatment effects vary over time, but when they do, equation (15c) defines the 

resulting bias in the DD. This does not mean that the research design is invalid. In this case 

specifications such as an event-study (Jacobson, LaLonde, and Sullivan 1993), “stacked DD” 

(Abraham and Sun 2018, Deshpande and Li 2017, Fadlon and Nielsen 2015), or reweighting 

estimators (Callaway and Sant'Anna 2018) may be more appropriate.13  

A. Interpreting the DD Estimand 

When the treatment effect is a constant, 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘(𝑊𝑊) = 𝑇𝑇𝑇𝑇𝑇𝑇, Δ𝑇𝑇𝑇𝑇𝑇𝑇 = 0, and 𝑉𝑉𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇. The 

rest of this section assumes that VWCT=0 and discusses how to interpret VWATT under different 

forms of treatment effect heterogeneity.  

i. Effects that vary across units but not over time 

If treatment effects are constant over time but vary across units, then 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘(𝑊𝑊) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 and we 

still have Δ𝑇𝑇𝑇𝑇𝑇𝑇 = 0. In this case DD identifies:  

                                                      
13 Recent DD research comes to related conclusions about DD with timing, but does not describe the full estimator as 
in equation (15). Abraham and Sun (2018), Borusyak and Jaravel (2017), and de Chaisemartin and D’HaultfŒuille 
(forthcoming) begin by imposing pairwise common trends (𝑉𝑉𝑊𝑊𝐶𝐶𝑇𝑇 = 0), and then incorporating Δ𝑇𝑇𝑇𝑇𝑇𝑇 into the DD 
estimand. The structure of the decomposition theorem, however, suggests that we should think of Δ𝑇𝑇𝑇𝑇𝑇𝑇 as a source 
of bias because it arises from the way equation (2) forms “the” control group. This distinction, made clear in equation 
(15), ensures an interpretable estimand (𝑉𝑉𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇) and clearly defined identifying assumptions (𝑉𝑉𝑊𝑊𝐶𝐶𝑇𝑇 = 0 and 
Δ𝑇𝑇𝑇𝑇𝑇𝑇 = 0).This follows from at least two related precedents. de Chaisemartin and D’HaultfŒuille (2018, p. 5) prove 
identification of dose-response DD models under an assumption on the treatment effects: “the average effect of going 
from 0 to d units of treatment among units with D(0)=d is stable over time.” Treatment effect homogeneity ensures 
an estimand with no negative weights. Similarly, the monotonicity assumption in Imbens and Angrist (1994) ensures 
that the local average treatment effect does not have negative weights.  
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                            𝑉𝑉𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘
𝑘𝑘≠𝑗𝑗

⎣
⎢
⎢
⎢
⎢
⎡

𝜎𝜎𝑘𝑘𝑗𝑗 + �𝜎𝜎𝑗𝑗𝑘𝑘𝑘𝑘
𝑘𝑘−1

𝑗𝑗=1

+ � 𝜎𝜎𝑘𝑘𝑗𝑗𝑘𝑘
𝐾𝐾

𝑗𝑗=𝑘𝑘+1

�����������������
≡ 𝑤𝑤𝑘𝑘

𝑇𝑇

⎦
⎥
⎥
⎥
⎥
⎤

 .                              (16) 

VWATT weights together the group-specific ATTs not by sample shares, but by a function of 

sample shares and treatment variance. The weights in (16) equal the sum of the decomposition 

weights for all the terms in which group 𝑘𝑘 acts as the treatment group, defined as 𝑤𝑤𝑘𝑘
𝑇𝑇.  

In general, 𝑤𝑤𝑘𝑘
𝑇𝑇 ≠ 𝑛𝑛𝑘𝑘∗ , so the parameter does not equal the sample ATT.14 Neither are the 

weights proportional to the share of time each unit spends under treatment, so VWATT also does 

not equal the effect in the average treated period. VWATT lies along the bias/variance tradeoff: 

the variance weights come from the fact that OLS combines 2x2 DDs efficiently but potentially 

moves the point estimate away from, say, the sample ATT. This tradeoff may be worthwhile. If 

estimates determine the level of some policy that affects social welfare, then the optimal estimator 

minimizes mean squared error (see appendix B and Kasy 2018). If VWATT is close to the ATT 

(for example) and has lower variance, it may be preferable by this criterion. 

The extent to which VWATT differs from the ATT depends on the relationship between 

treatment effect heterogeneity and treatment timing in a given sample. For example, a Roy model 

of selection on gains implies that treatment rolls out first to units with the largest effects. Site 

selection in experimental evaluations of training programs (Joseph Hotz, Imbens, and Mortimer 

2005) and energy conservation programs (Allcott 2015) matches this pattern. In this case, 

regression DD underestimates the sample-weighted ATT if treatment rolls out in the first half of 

the sample and overestimates it if treatment rolls out in the second half. The opposite conclusions 

                                                      
14 Abraham and Sun (2018), Borusyak and Jaravel (2017), Chernozhukov et al. (2013), de Chaisemartin and 
D’HaultfŒuille (forthcoming), Gibbons, Serrato, and Urbancic (2018), Wooldridge (2005) all make a similar 
observation. The DD decomposition theorem, provides a new solution for the relevant weights.  
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follow from “reverse Roy” selection where units with the smallest effects select into treatment 

first, which describes the take up of housing vouchers (Chyn forthcoming) and charter school 

applications (Walters forthcoming). Both the model of treatment allocation and characteristics of 

the sample matter for interpretation. 

An easy way to gauge whether VWATT differs from a sample-weighted ATT is to scatter 

the weights from (16), 𝑤𝑤𝑘𝑘
𝑇𝑇, against each group’s sample share among the treated, 𝑛𝑛𝑘𝑘

1−𝑛𝑛𝑘𝑘
. These two 

may be close if there is little variation in treatment timing or if one group is very large. Conversely, 

weighting matters less if the 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘’s are similar, which one can evaluate by aggregating each 

group’s 2x2 DD estimates from the decomposition theorem. Finally, one could directly compare 

VWATT to point estimates of a particular parameter of interest. Several alternative estimators give 

differently weighted averages of ATT’s (Abraham and Sun 2018, Callaway and Sant'Anna 2018, 

de Chaisemartin and D’HaultfŒuille forthcoming). 

ii. Effects that vary over time but not across units 
Time-varying treatment effects generate heterogeneity across the 2x2 DDs by averaging over 

different post-treatment windows, up-weight short-run effects most likely to appear in the small 

windows between timing groups, and bias estimates away from VWATT because Δ𝑇𝑇𝑇𝑇𝑇𝑇 ≠ 0. 

Equations (14b) and (14c) show that common trends in counterfactual outcomes leaves one set of 

timing terms biased (�̂�𝛽𝑘𝑘ℓ
2𝑥𝑥2,ℓ ), while common trends between counterfactual and treated outcomes 

leaves the other set biased (�̂�𝛽𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘).  

To illustrate this point, figure 3 plots a case where counterfactual outcomes are identical, 

but the treatment effect is a linear trend-break, 𝑌𝑌𝑖𝑖𝑖𝑖1 = 𝑌𝑌𝑖𝑖𝑖𝑖0 +  𝜙𝜙 ⋅ (𝑡𝑡 − 𝑡𝑡𝑖𝑖∗ + 1) (see Meer and West 

2013). �̂�𝛽𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘 uses group ℓ as a control group during its pre-period and identifies the ATT during 
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the middle window in which treatment status varies: 𝜙𝜙 �𝑖𝑖ℓ
∗−𝑖𝑖𝑘𝑘

∗+1�
2

. �̂�𝛽𝑘𝑘ℓ
2𝑥𝑥2,ℓ however, is biased because 

the control group (𝑘𝑘) experiences a trend in outcomes due to the treatment effect:15  

                         �̂�𝛽𝑘𝑘ℓ
2𝑥𝑥2,ℓ = 𝑇𝑇𝑇𝑇𝑇𝑇ℓ(𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ))�����������

𝜙𝜙
�𝑇𝑇−(𝑖𝑖ℓ

∗−1)�
2

− 𝜙𝜙
�𝑇𝑇 − (𝑡𝑡𝑘𝑘∗ − 1)�

2

�����������
Δ𝑇𝑇𝑇𝑇𝑇𝑇/(1−𝜇𝜇𝑘𝑘ℓ)

= 𝜙𝜙
(𝑡𝑡𝑘𝑘∗ − 𝑡𝑡ℓ∗)

2
≤ 0 .                   (17) 

This bias feeds through to 𝛽𝛽𝑘𝑘ℓ2𝑥𝑥2 according to the relative weight on the 2x2 terms:  

                                               �̂�𝛽𝑘𝑘ℓ2𝑥𝑥2 =  𝜙𝜙
[�𝜎𝜎𝑘𝑘ℓ𝑘𝑘 − 𝜎𝜎𝑘𝑘ℓℓ �(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗) + 1]

2
 .                                                 (18) 

The entire two-group timing estimate can be wrong signed if there is sufficiently more weight on 

 �̂�𝛽𝑘𝑘ℓ
2𝑥𝑥2,ℓ than  �̂�𝛽𝑘𝑘ℓ

2𝑥𝑥2,𝑘𝑘 (ie. 𝜎𝜎𝑘𝑘ℓℓ > 𝜎𝜎𝑘𝑘ℓ𝑘𝑘 ). In figure 3, for example, both units are treated equally close to 

the ends of the panel, so 𝜎𝜎𝑘𝑘ℓ𝑘𝑘 = 𝜎𝜎𝑘𝑘ℓℓ  and the estimated DD effect equals 𝜙𝜙
2
, even though both units 

experience treatment effects as large as 𝜙𝜙 ⋅ [𝑇𝑇 − (𝑡𝑡𝑘𝑘∗ − 1)]. Summarizing time-varying effects 

using equation (2) yields estimates that are too small or even wrong-signed, and should not be used 

to judge the meaning or plausibility of effect sizes.16 

                                                      
15 The average of the effects for group 𝑘𝑘 during any set of positive event-times is just 𝜙𝜙 times the average event-time. 
The 𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ) period contains event-times 0 through 𝑡𝑡ℓ∗ − (𝑡𝑡𝑘𝑘∗ − 1) and the 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ) period contains event-times 
𝑡𝑡ℓ∗ − (𝑡𝑡𝑘𝑘∗ − 1) through 𝑇𝑇 − (𝑡𝑡𝑘𝑘∗ − 1), so we have: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ)� = 𝜙𝜙
(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗)(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ + 1)

2(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗) = 𝜙𝜙
𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ + 1

2
 , 

                           𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ)�                                                    = 𝜙𝜙(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗) + 𝜙𝜙
𝑇𝑇 − 𝑡𝑡ℓ∗ + 2

2
 , 

and the difference, which appears in the identifying assumption in (17) equals:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ)� − 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ)� = 𝜙𝜙(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗) + 𝜙𝜙
𝑇𝑇 − 𝑡𝑡ℓ∗ + 2

2
− 𝜙𝜙

𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ + 1
2

=
𝜙𝜙
2
�𝑇𝑇 − (𝑡𝑡𝑘𝑘∗ − 1)� . 

Another way to see this, as noted in figure 3, is that average outcomes in the treatment group are always below average 
outcomes in the early group in the 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ) period and the difference equals the maximum size of the treatment effect 
in group 𝑘𝑘 at the end of the 𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ) period: 𝜙𝜙 ⋅ (𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ + 1). Average outcomes for the late group are also below 
average outcomes in the early group in the 𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ) period, but by the average amount of the treatment effect in 
group 𝑘𝑘 during the 𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ) period: 𝜙𝜙 (𝑖𝑖ℓ

∗−𝑖𝑖𝑘𝑘
∗+1)
2

. Outcomes in group ℓ actually fall on average relative to group 𝑘𝑘, 
which makes the DD estimate negative even when all treatment effects are positive. 
16 Borusyak and Jaravel (2017) show that that common, linear trends, in the post- and pre- periods cannot be estimated 
in this design. The decomposition theorem shows why: timing groups act as controls for each other, so permanent 
common trends difference out. This is not a meaningful limitation for treatment effect estimation, though, because 
“effects” must occur after treatment. Job displacement provides a clear example (Jacobson, LaLonde, and Sullivan 
1993, Krolikowski 2017). Comparisons based on displacement timing cannot identify whether all displaced workers 
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Note that this bias is specific to a single-coefficient specification. More flexible event-study 

specifications may not suffer from this problem (although see Proposition 2 in Abraham and Sun 

2018). Fadlon and Nielsen (2015) and Deshpande and Li (2017) match treated units with controls 

that receive treatment a given amount of time later and gives an average of 𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

 terms with a 

fixed post-period (see similar proposals in Abraham and Sun 2018, Borusyak and Jaravel 2017, de 

Chaisemartin and D’HaultfŒuille forthcoming). Callaway and Sant'Anna (2018) discuss how to 

aggregate heterogeneous treatment effects and develop a reweighting estimator to do so.  

B. What is the identifying assumption and how should we test it? 
The preceding analysis maintained the assumption of equal counterfactual trends across groups, 

but (15) shows that when Δ𝑇𝑇𝑇𝑇𝑇𝑇 = 0 identification of 𝑉𝑉𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇 only requires 𝑉𝑉𝑊𝑊𝐶𝐶𝑇𝑇 = 0. 

Assuming linear counterfactual trends (𝛥𝛥𝑌𝑌𝑘𝑘0 ≡ 𝑌𝑌𝑘𝑘,𝑖𝑖
0 − 𝑌𝑌𝑘𝑘,𝑖𝑖−1

0 ) leads to a convenient approximation 

to 𝑉𝑉𝑊𝑊𝐶𝐶𝑇𝑇:17  

        𝑉𝑉𝑊𝑊𝐶𝐶𝑇𝑇 ≈ � Δ𝑌𝑌𝑘𝑘0

𝑘𝑘≠𝑗𝑗

�𝜎𝜎𝑘𝑘𝑗𝑗 + ��𝜎𝜎𝑗𝑗𝑘𝑘𝑘𝑘 − 𝜎𝜎𝑗𝑗𝑘𝑘
𝑗𝑗 �

𝑘𝑘−1

𝑗𝑗=1

+ � �𝜎𝜎𝑘𝑘𝑗𝑗𝑘𝑘 − 𝜎𝜎𝑘𝑘𝑗𝑗
𝑗𝑗 �

𝐾𝐾

𝑗𝑗=𝑘𝑘+1

� − Δ𝑌𝑌𝑗𝑗0 � 𝜎𝜎𝑘𝑘𝑗𝑗
𝑘𝑘≠𝑗𝑗

  

                                  =  �Δ𝑌𝑌𝑘𝑘0

𝑘𝑘

[𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶] .                                                                                           (19) 

Equation (19) generalizes the definition of common trends to the timing case and shows how a 

given group’s counterfactual trend biases the overall estimate. To illustrate, assume there is a 

positive differential trend in group 𝑘𝑘 only: Δ𝑌𝑌𝑘𝑘0 > 0. This will bias 𝛽𝛽�𝑘𝑘𝑗𝑗
2𝑥𝑥2

 by Δ𝑌𝑌𝑘𝑘0 which gets a 

weight of 𝜎𝜎𝑘𝑘𝑗𝑗 in the full estimate. When comparing group 𝑘𝑘 to other timing groups, however, 

biases offset each other. For the comparisons to group 1, for example, units in group 𝑘𝑘 act as 

                                                      
have a permanently different earnings trajectory than never displaced workers (the unidentified linear component), 
but they can identify changes in the time-path of earnings around the displacement event (the treatment effect). 
17 Linearly trending unobservables lead to larger bias in 2x2 DDs that use more periods. In the linear case, differences 
in the magnitude of the bias cancel out across each group’s “treatment” and “control” terms, and equation (19) holds. 
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treatments in 𝛽𝛽�1𝑘𝑘
2𝑥𝑥2,𝑘𝑘

 and the bias equals Δ𝑌𝑌𝑘𝑘0 and is weighted by 𝜎𝜎1𝑘𝑘𝑘𝑘 . But in 𝛽𝛽�1𝑘𝑘
2𝑥𝑥2,1

, the units in 

group 𝑘𝑘 act as controls so the bias equals −Δ𝑌𝑌𝑘𝑘0 and is weighted by 𝜎𝜎1𝑘𝑘1 . On net the bias in 𝛽𝛽�1𝑘𝑘
2𝑥𝑥2

 is 

ambiguous: Δ𝑌𝑌𝑘𝑘0�𝜎𝜎1𝑘𝑘𝑘𝑘 − 𝜎𝜎1𝑘𝑘1 �. 

Similar expressions hold for the comparison of group 𝑘𝑘 to every other group, and the total 

weight on each group’s counterfactual trend equals the difference between the total weight it gets 

when it acts as a treatment group—𝑤𝑤𝑘𝑘
𝑇𝑇 from equation (16)—minus the total weight it gets when it 

acts as a control group—𝑤𝑤𝑘𝑘
𝐶𝐶 ≡ ∑ 𝜎𝜎𝑗𝑗𝑘𝑘

𝑗𝑗𝑘𝑘−1
𝑗𝑗=1 + ∑ 𝜎𝜎𝑘𝑘𝑗𝑗

𝑗𝑗𝐾𝐾
𝑗𝑗=𝑘𝑘+1 . This difference is a new result that maps 

(linear) differential trends to bias.18 A positive trend in group 𝑘𝑘 induces positive bias when 𝑤𝑤𝑘𝑘
𝑇𝑇 −

𝑤𝑤𝑘𝑘
𝐶𝐶 > 0, negative bias when 𝑤𝑤𝑘𝑘

𝑇𝑇 − 𝑤𝑤𝑘𝑘
𝐶𝐶 < 0, and no bias when 𝑤𝑤𝑘𝑘

𝑇𝑇 − 𝑤𝑤𝑘𝑘
𝐶𝐶 = 0.19  

Figure 4 plots 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 as a function of 𝐷𝐷� assuming equal group sizes. Units treated in the 

middle of the panel have high treatment variance and get a lot of weight when they act as the 

treatment group, while units treated toward the ends of the panel get relatively more weight when 

they act as controls. As 𝑡𝑡∗ approaches 1 or T, 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 becomes negative; some timing groups 

effectively act as controls. This defines “the” control group in timing-only designs: all groups are 

controls in some terms, but the earliest and/or latest units necessarily get more weight as controls 

than treatments.  

                                                      
18 Applications typically discuss bias in general terms, arguing that unobservables must be “uncorrelated” with timing, 
but have not been able to specify how counterfactual trends would bias a two-way fixed effects estimate. For example, 
Almond, Hoynes, and Schanzenbach (2011, p 389-190) argue: “Counties with strong support for the low-income 
population (such as northern, urban counties with large populations of poor) may adopt FSP earlier in the period. This 
systematic variation in food stamp adoption could lead to spurious estimates of the program impact if those same 
county characteristics are associated with differential trends in the outcome variables.” 
19 Clearly these results hold only under the assumption of linearity. This, however, is a common starting point, it 
approximates non-linear pre-trends, and it provides a simple way to increase the power of such pre-tests (see Bilinski 
and Hatfield 2019). Moreover, the decomposition weights could be combined with assumptions about post-treatment 
trend-breaks in a partial identification framework (Rambachan and Roth 2019). Finally, when pre-treatment covariates 
are not measured at the same frequency as 𝑦𝑦𝑖𝑖𝑖𝑖  then one must construct balance tests “by hand” since using confounders 
as outcomes in a fixed effects regression in a different sample will not rely on the same weights. Equation (19) shows 
how to do so. With only one pre-treatment time period this test does not rely on linearity.  
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Is a DD design internally valid if 𝑉𝑉𝑊𝑊𝐶𝐶𝑇𝑇 = 0 but there is evidence that one or more groups 

have a differential trend? Consider an analogy to IV. The identifying assumption for a single Wald 

estimate comparing two values of a variable 𝑧𝑧𝑖𝑖 is 𝑇𝑇[𝜖𝜖𝑖𝑖|𝑧𝑧𝑖𝑖 = 𝑎𝑎] − 𝑇𝑇[𝜖𝜖𝑖𝑖|𝑧𝑧𝑖𝑖 = 𝑏𝑏] = 0. When 𝑧𝑧𝑖𝑖 takes 

many values it is unlikely that every possible Wald estimate satisfies this condition. A two-stage 

least squares estimator that uses 𝑧𝑧𝑖𝑖 as an instrument, however, weights together all such Wald 

estimates and requires 𝑇𝑇[𝑧𝑧𝑖𝑖𝜖𝜖𝑖𝑖] = 0. This is the commonly stated identifying assumption for IV. 

Similarly, while each 2x2 DD requires pairwise common trends, the full DD estimator only 

requires 𝑉𝑉𝑊𝑊𝐶𝐶𝑇𝑇 = 0. Dropping a timing group with Δ𝑌𝑌𝑘𝑘0 > 0 but 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 ≈ 0, for example, will 

“fix” the violation of equal trends without changing the estimate at all. 

How should researchers test internal validity in a design with treatment timing? One 

approach is to test “pairwise” balance across groups. Existing approaches include estimating a 

linear relationships between a confounder, 𝑥𝑥𝑖𝑖𝑖𝑖, and 𝑡𝑡𝑘𝑘∗  or comparing averages of 𝑥𝑥𝑖𝑖𝑖𝑖 in “early” and 

“late” treated units (Almond, Hoynes, and Schanzenbach 2011, Bailey and Goodman-Bacon 

2015).20 The intuition is that if identification comes from comparing earlier- and later-treated units 

then covariates should be balanced between earlier- and later-treated units. Equation (19) shows 

that the effective control group can include both the earliest and latest treated units, so these tests 

could miss the relevant imbalance between the “most” and “least” treated units. Regressing 𝑥𝑥𝑖𝑖𝑖𝑖 on 

a constant and dummies for timing groups tests the null of joint balance across groups (𝐻𝐻0: 𝑥𝑥𝑘𝑘 −

𝑥𝑥𝑗𝑗 = 0, ∀𝑘𝑘), and plotting these means clarifies where any imbalance comes from. With many 

timing groups, though, this F-test will have low power and does not reflect how imbalance matters 

for bias in �̂�𝛽𝐷𝐷𝐷𝐷: (𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶). 

                                                      
20 One can use time-varying confounders as outcomes (Freyaldenhoven, Hansen, and Shapiro 2018, Pei, Pischke, and 
Schwandt 2017), but this does not test for balance in levels, nor can it be used for sparsely measured confounders.  
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Equation (19) also suggests a single 𝑡𝑡-test of reweighted balance in 𝑥𝑥𝑖𝑖𝑖𝑖, a proxy for 

𝑉𝑉𝑊𝑊𝐶𝐶𝑇𝑇 = 0: 

1. Generate a dummy for the effective treatment group, 𝐵𝐵𝑘𝑘 = 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 > 0. 

2. Regress timing-group means, 𝑥𝑥𝑘𝑘, on 𝐵𝐵𝑘𝑘 weighting by �𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶� 

3. The coefficient on 𝐵𝐵𝑘𝑘 equals covariate differences weighted by the actual identifying 

variation, and its t-statistic tests the null of reweighted balance in (19).  

One can use this strategy to test for pre-treatment trends in confounders (or the outcome) by 

regressing �̅�𝑥𝑘𝑘𝑖𝑖 on 𝐵𝐵𝑘𝑘, year dummies, and their interaction, or the interaction of 𝐵𝐵𝑘𝑘 with a linear 

trend using dates before any treatment starts. This procedure involves a single null hypothesis that 

maps directly to bias in the estimator, rather than a joint null without a clear relationship to bias. 

III. DD DECOMPOSITION IN PRACTICE: UNILATERAL DIVORCE AND FEMALE SUICIDE 
To illustrate how to use DD decomposition theorem in practice, I replicate Stevenson and Wolfers’ 

(2006) analysis of no-fault divorce reforms and female suicide. Unilateral (or no-fault) divorce 

allowed either spouse to end a marriage, redistributing property rights and bargaining power 

relative to fault-based divorce regimes. Stevenson and Wolfers exploit “the natural variation 

resulting from the different timing of the adoption of unilateral divorce laws” in 37 states from 

1969-1985 (see table 1) using the “remaining fourteen states as controls” to evaluate the effect of 

these reforms on female suicide rates. Figure 5 replicates their event-study result for female suicide 

using an unweighted specification with no covariates.21 Our results match closely: suicide rates 

display no clear trend before the implementation of unilateral divorce laws, but begin falling soon 

                                                      
21 Data on suicides by age, sex, state, and year come from the National Center for Health Statistics’ Multiple Cause of 
Death files from 1964-1996, and population denominators come from the 1960 Census (Haines and ICPSR 2010) and 
the Surveillance, Epidemiology, and End Results data (SEER 2013). The outcome is the age-adjusted (using the 
national female age distribution in 1964) suicide mortality rate per million women. The average suicide rate in my 
data is 52 deaths per million women versus 54 in Stevenson and Wolfers (2006). My replication analysis uses levels 
to match their figure, but the conclusions all follow from a log specification as well. 
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after. They report a DD coefficient in logs of -9.7 (s.e. = 2.3). I find a DD coefficient in levels of 

-3.08 (s.e. = 1.13), or a proportional reduction of 6 percent.22 

A. Describing the design 
Figure 6 uses the DD decomposition theorem to illustrate the sources of variation. I plot each 2x2 

DD against its weight and calculate the average effect and total weight for the three types of 2x2 

comparisons: treated/untreated, early/late, late/early.23 The two-way fixed effects estimate, -3.08, 

is an average of the y-axis values weighted by their x-axis values. Summing the weights on timing 

terms (𝑠𝑠𝑘𝑘ℓ𝑘𝑘  and 𝑠𝑠𝑘𝑘ℓℓ ) shows how much of �̂�𝛽𝐷𝐷𝐷𝐷 comes from timing variation (37 percent). The large 

untreated group puts a lot of weight on �̂�𝛽𝑘𝑘𝑗𝑗2𝑥𝑥2 terms, but more on those involving pre-1964 reform 

states (38.4 percent) than non-reform states (24 percent). Figure 6 also highlights the role of a few 

influential 2x2 DDs. Comparisons between the 1973 states and non-reform/pre-1964 reform states 

account for 18 percent of the estimate, and the ten highest-weight 2x2 DDs account for over half.  

The bias resulting from time-varying effects is also apparent in figure 6. The average of 

the post-treatment event-study estimates in figure 5 is -4.92, but the DD estimate is 60 percent as 

large. The difference stems from the comparisons of later- to earlier-treated groups. The average 

treated/untreated estimates are negative (-5.33 and -7.04) as are the comparisons of earlier- to later-

treated states (although less so: -0.19). 24 The comparisons of later- to earlier-treated states, 

however, are positive on average (3.51) and account for the bias in the overall DD estimate. Using 

the decomposition theorem to take these terms out of the weighted average yields an effect of -

                                                      
22 The differences in the magnitudes likely come from three sources: age-adjustment (the original paper does not 
describe an age-adjusting procedure); data on population denominators; and my omission of Alaska and Hawaii. 
23 There are 156 distinct DD components: 12 comparisons between timing groups and pre-reform states, 12 
comparisons between timing groups and non-reform states, and (122 − 12)/2 = 66 comparisons between an earlier 
switcher and a later non-switcher, and 66 comparisons between a later switcher and an earlier non-switcher 
24 This point also applies to units that are already treated at the beginning of the panel, like the pre-1964 reform states 
in the unilateral divorce analysis. Since their 𝐷𝐷�𝑘𝑘 = 1 they can only act as an already-treated control group. If the 
effects for pre-1964 reform states had stabilized by 1969 they would not cause bias. 
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5.44—close to the average of the event-study coefficients. The DD decomposition theorem shows 

that one way to summarize effects in the presence of time-varying heterogeneity is simply to 

subtract the components of the DD estimate that are biased using the weights in equation (10a). 

B. Testing the design 
Figures 7 and 8 test for covariate balance in the unilateral divorce analysis. Figure 7 plots the 

balance test weights, 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶, from equation (19), the corresponding weights from a timing-only 

design, and each group’s sample share. Because they have relatively low treatment variance, the 

earliest timing groups receive less weight than their sample shares imply.25 In fact, the 1969 states 

effectively act as controls because 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 < 0.  

Figure 8 implements both a joint balance test and the reweighted test using two potential 

determinants of marriage market equilibria in 1960: per-capita income and the male/female sex 

ratio. Panel A shows that average per-capita income in untreated states ($13,431) is lower than the 

average in every timing group except for those that implemented unilateral divorce in 1969 (which 

actually get more weight as controls) or 1985. The joint 𝐹𝐹-test, however, fails to reject the null 

hypothesis of equal means. It is not surprising that a test of 12 restrictions on 48 states observations 

fails to generate strong evidence against the null. The reweighed test, on the other hand, does detect 

a difference in per-capita income of $2,285 between effective treatment states—those that 

implemented unilateral divorce in 1970 or later—and effective control states—pre-1964 reform 

states, non-reform states, and the 1969 states. Panel B shows that the 1960 sex ratio is higher in 

almost all treatment states than in the control states. The joint test cannot reject the null of equal 

means, but the reweighted test does (𝑝𝑝 = 0.06).26  

                                                      
25 Adding 5 × 𝑦𝑦𝑒𝑒𝑎𝑎𝑦𝑦 to the suicide rate for the 1970 states (𝑤𝑤𝑘𝑘𝑇𝑇 − 𝑤𝑤𝑘𝑘𝐶𝐶 = 0.0039) changes the DD estimate from -3.08 
to -2.75, but adding it to the 1973 group (𝑤𝑤𝑘𝑘𝑇𝑇 − 𝑤𝑤𝑘𝑘𝐶𝐶 = 0.18) yields a very biased DD estimate of 12.28. 
26 One can run a joint test of balance across covariates using seemingly unrelated regressions (SUR), as suggested by 
Lee and Lemieux (2010) in the regression discontinuity context. The results of these 𝜒𝜒2 tests are displayed at the top 
of figure 8. As with the separate balance tests, I fail to reject the null of equal means across groups and covariates. 
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IV. ALTERNATIVE SPECIFICATIONS 
The results above refer to parsimonious regressions like (2), but researchers almost always 

estimate multiple specifications and use differences to evaluate internal validity (Oster 2016) or 

choose projects in the first place. This section extends the DD decomposition theorem to different 

weighting choices and control variables, providing simple new tools for learning why estimates 

change across specifications. 

The DD decomposition theorem suggests a simple way to understand why estimates 

change. Any alternative specification that equals a weighted average can be written as a product a 

vector of 2x2 DDs and a vector of weights—�̂�𝛽𝐷𝐷𝐷𝐷 = 𝒔𝒔′𝜷𝜷�𝟐𝟐𝟐𝟐𝟐𝟐—so that the difference between two 

specifications has the form of a Oaxaca-Blinder-Kitagawa decomposition (Blinder 1973, Oaxaca 

1973, Kitagawa 1955): 

     �̂�𝛽𝑎𝑎𝑎𝑎𝑖𝑖𝐷𝐷𝐷𝐷 − �̂�𝛽𝐷𝐷𝐷𝐷 = 𝒔𝒔′�𝜷𝜷�𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐𝟐𝟐𝟐𝟐 − 𝜷𝜷�𝟐𝟐𝟐𝟐𝟐𝟐������������
𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑡𝑡 2𝑥𝑥2 𝐷𝐷𝐷𝐷𝐷𝐷

+ (𝒔𝒔𝒂𝒂𝒂𝒂𝒂𝒂′ − 𝒔𝒔′)𝜷𝜷�𝟐𝟐𝟐𝟐𝟐𝟐�����������
𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑡𝑡 𝑤𝑤𝐷𝐷𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝐷𝐷

+ (𝒔𝒔𝒂𝒂𝒂𝒂𝒂𝒂′ − 𝒔𝒔′)�𝜷𝜷�𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐𝟐𝟐𝟐𝟐 − 𝜷𝜷�𝟐𝟐𝟐𝟐𝟐𝟐������������������
𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑡𝑡 𝑖𝑖𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑛𝑛

 .    (20)  

Dividing by  �̂�𝛽𝑎𝑎𝑎𝑎𝑖𝑖𝐷𝐷𝐷𝐷 − �̂�𝛽𝐷𝐷𝐷𝐷 shows the proportional contribution of changes in the 2x2 DD’s, changes 

in the weights, and the interaction of the two.27 It is also simple to learn which terms drive each 

kind of difference by plotting 𝜷𝜷�𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐𝟐𝟐𝟐𝟐 against 𝜷𝜷�𝟐𝟐𝟐𝟐𝟐𝟐 and 𝒔𝒔 against 𝒔𝒔𝒂𝒂𝒂𝒂𝒂𝒂.  

A. Weighting 
Population weighting increases the influence of large units in means of 𝑦𝑦 that make up each 2x2 

DD (which changes 𝜷𝜷�𝑾𝑾𝑾𝑾𝑾𝑾
𝟐𝟐𝟐𝟐𝟐𝟐 − 𝜷𝜷�𝑶𝑶𝑾𝑾𝑾𝑾𝟐𝟐𝟐𝟐𝟐𝟐 ), and it increases the influence of terms involving large groups 

by basing the decomposition weights on population rather than sample shares (which changes 

𝒔𝒔𝑾𝑾𝑾𝑾𝑾𝑾
′ − 𝒔𝒔𝑶𝑶𝑾𝑾𝑾𝑾′ ).28 In Table 2, population weighting changes the unilateral divorce DD estimate from 

                                                      
The joint reweighted balance test, however, does reject the null of equal weighted means between effective treatment 
and control groups. With 48 states and 12 timing groups, there are not sufficient degrees of freedom to implement a 
full joint test across many covariates. This is an additional rationale for the reweighted test. 
27 Grosz, Miller, and Shenhav (2018) propose a similar decomposition for family fixed effects estimates. 
28 One common robustness check is to drop untreated units, and the decomposition theorem shows that this is 
equivalent to setting all 𝑠𝑠𝑘𝑘𝑗𝑗 = 0 and rescaling the 𝑠𝑠𝑘𝑘ℓ to sum to one. In Table 2, this actually makes the unilateral 
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-3.08 to -0.35. Just over half of the difference comes from changes in the 2x2 DD terms, 38 percent 

from changes in the weights, and 9 percent from the interaction of the two.29  

Figure 9 scatters the weighted 2x2 DDs against the unweighted ones. Most components do not 

change and lie along the 45-degree line, but large differences emerge for terms involving the 1970 

states: Iowa and California.30 Weighting gives more influence to California, and makes the terms 

that use 1970 states as treatments more negative, while it makes terms that use them as controls 

more positive. This is consistent either with an ongoing downward trend in suicides in California 

or, as discussed above, strongly time-varying treatment effects.31 

B. DD with Controls 
The ability to control for covariates is a common motivation for regression DD as it is thought to 

make a “common trends” assumption more plausible. Cameron and Trivedi (2005, pp 770) observe 

that “an obvious extension is to include regressors” and Angrist and Pischke (2009, pp 236) 

highlight “a further advantage of regression DD: it’s easy to add additional covariates.” Theoretical 

analyses typically focus on time-invariant 𝑿𝑿𝒊𝒊 entered as a direct control in specifications like (1) 

(Sant'Anna and Zhao 2018), or reweighting strategies that use 𝑿𝑿𝒊𝒊 itself or pre-treatment changes 

in covariates or outcomes . Most applications, however, include time-varying controls 𝑿𝑿𝒊𝒊𝒂𝒂: 

                                                      
divorce estimate positive (2.42, s.e. = 1.81), but figure 6 suggests that this occurs not necessarily because of a problem 
with the design, but because half of the timing terms are biased by time-varying treatment effects. 
29 Solon, Haider, and Wooldridge (2015) show that differences between population-weighted (WLS) and unweighted 
(OLS) estimates can arise in the presence of unmodeled heterogeneity, and suggest comparing the two estimators 
(Deaton 1997, Wooldridge 2001).  
30 Lee and Solon (2011) observe that California drives the divergence between OLS and WLS estimate in analyses of 
no-fault divorce on divorce rates (Wolfers 2006). 
31 Weighting by a function of the estimated propensity score  is often used to impose covariate balance between treated 
and untreated units (Abadie 2005). With timing variation this approach has two limitations. First, reweighting 
untreated observations has no effect on the timing terms. Second, reweighting untreated observations by their 
propensity to be in any timing group does not impose covariate balance for each timing group. By changing the relative 
weight on different untreated units but leaving their total weight the same, this strategy does not change 𝒔𝒔, so all 
differences stem from the way reweighting affects the �̂�𝛽𝑘𝑘𝑗𝑗2𝑥𝑥2 terms. Table 2 estimates reweighted specification based 
on a propensity score equation that contains the 1960 sex ratio and per-capita income, general fertility rate and infant 
mortality rate. This puts much more weight on Delaware and less weight on New York, and makes almost all �̂�𝛽𝑘𝑘𝑗𝑗2𝑥𝑥2 
much less negative, changing the overall DD estimate to 1.04. Callaway and Sant'Anna (2018) propose a generalized 
propensity score reweighted estimator to exploit timing variation. 
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                                                 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖⋅ + 𝛼𝛼⋅𝑖𝑖 + 𝚽𝚽𝑿𝑿𝒊𝒊𝒂𝒂 + 𝛽𝛽𝐷𝐷𝐷𝐷|𝑋𝑋 𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 .                                      (21) 

But we have no theoretical guidance on how these controls adjust the 2x2 DDs, change the 

identifying variation, or when they eliminate violations of the identifying assumption.32 This 

subsection derives a decomposition result for a general controlled DD specifications like (21).  

To see how the controlled DD coefficient is identified first remove unit- and time-means 

(indicated by tildes) and then estimate a Frisch-Waugh regression that partials 𝑿𝑿�𝒊𝒊𝒂𝒂 out of 𝐷𝐷�𝑖𝑖𝑖𝑖: 

                                                                     𝐷𝐷�𝑖𝑖𝑖𝑖 = 𝚪𝚪𝑿𝑿�𝒊𝒊𝒂𝒂�
𝑝𝑝�𝑖𝑖𝑖𝑖

+ �̃�𝑑𝑖𝑖𝑖𝑖  .                                                                 (22) 

The index of covariates, 𝑝𝑝�𝑖𝑖𝑖𝑖 ≡ 𝚪𝚪�𝑿𝑿�𝒊𝒊𝒂𝒂 is predicted treatment status for unit 𝑖𝑖 in period 𝑡𝑡 based on the 

sample-wide relationship between 𝑿𝑿�𝒊𝒊𝒂𝒂 and 𝐷𝐷�𝑖𝑖𝑖𝑖 (see Sloczynski 2017). The covariate-adjusted 

treatment variable subtracts predicted treatment status from true treatment status: 𝑑𝑑�𝑖𝑖𝑖𝑖 ≡

�(𝐷𝐷𝑖𝑖𝑖𝑖 − 𝐷𝐷�𝑖𝑖) − �𝚪𝚪�𝑿𝑿�𝒊𝒊𝒂𝒂 − 𝚪𝚪�𝑿𝑿�𝒊𝒊�� − ��𝐷𝐷�𝑖𝑖 − 𝐷𝐷��� − �𝚪𝚪�𝑿𝑿�𝒂𝒂 − 𝚪𝚪�𝑿𝑿����. The controlled DD coefficient comes 

from a regression of 𝑦𝑦𝑖𝑖𝑖𝑖 on 𝑑𝑑�𝑖𝑖𝑖𝑖: 

                                           �̂�𝛽𝐷𝐷𝐷𝐷|𝑋𝑋 ≡
𝐶𝐶� �𝑦𝑦𝑖𝑖𝑖𝑖,𝑑𝑑�𝑖𝑖𝑖𝑖�

𝑉𝑉�𝑑𝑑
=
𝐶𝐶� �𝑦𝑦𝑖𝑖𝑖𝑖,𝐷𝐷�𝑖𝑖𝑖𝑖 − 𝑝𝑝�𝑖𝑖𝑖𝑖�

𝑉𝑉�𝑑𝑑
  .                                          (23) 

Equation (23) shows that identification of �̂�𝛽𝐷𝐷𝐷𝐷|𝑋𝑋 comes from variation in 𝐷𝐷�𝑖𝑖𝑖𝑖 and 𝑝𝑝�𝑖𝑖𝑖𝑖. 𝐷𝐷�𝑖𝑖𝑖𝑖 varies 

by timing group and time, but 𝑝𝑝�𝑖𝑖𝑖𝑖 (generally) varies across units, even those in the same treatment 

timing group.  

To derive a decomposition result for �̂�𝛽𝐷𝐷𝐷𝐷|𝑋𝑋 first split �̃�𝑑𝑖𝑖𝑖𝑖 into a “between” timing group 

term and a “within” timing group term by adding and subtracting group-by-year averages  �̅�𝑑𝑘𝑘𝑖𝑖 −

�̅�𝑑𝑘𝑘 =  (𝐷𝐷�𝑘𝑘𝑖𝑖 − 𝐷𝐷�𝑘𝑘) − �𝚪𝚪�𝑿𝑿�𝒌𝒌𝒂𝒂 − 𝚪𝚪�𝑿𝑿�𝒌𝒌�: 

                                                      
32 de Chaisemartin and D’Haultfoeuille (2018) analyze a DD specification for the modified outcome variable 𝑦𝑦𝑖𝑖𝑖𝑖 −
𝚽𝚽𝑿𝑿𝒊𝒊𝒂𝒂, which has the same weights as the uncontrolled specification by definition, but does not account for the way 
that control variables change the identifying variation in 𝐷𝐷�𝑖𝑖𝑖𝑖. 
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                              �̃�𝑑𝑖𝑖𝑖𝑖 = �𝑑𝑑𝑖𝑖𝑖𝑖 − �̅�𝑑𝑖𝑖� − ��̅�𝑑𝑘𝑘𝑖𝑖 − �̅�𝑑𝑘𝑘����������������
𝑑𝑑�𝑖𝑖(𝑘𝑘)𝑖𝑖

+ ��̅�𝑑𝑘𝑘𝑖𝑖 − �̅�𝑑𝑘𝑘� − ��̅�𝑑𝑖𝑖 − �̅̅�𝑑����������������
𝑑𝑑�𝑘𝑘𝑖𝑖

   .                         (24) 

Substituting (24) into (23) shows that controls both adjust the DD coefficient at the group-time 

level (�̃�𝑑𝑘𝑘𝑖𝑖), and introduce within-group comparisons (�̃�𝑑𝑖𝑖(𝑘𝑘)𝑖𝑖): 

            �̂�𝛽𝐷𝐷𝐷𝐷|𝑋𝑋 =
𝐶𝐶� �𝑦𝑦𝑖𝑖𝑖𝑖, �̃�𝑑𝑖𝑖(𝑘𝑘)𝑖𝑖� + 𝐶𝐶� �𝑦𝑦𝑖𝑖𝑖𝑖, �̃�𝑑𝑘𝑘𝑖𝑖�

𝑉𝑉�𝑑𝑑
=
𝑉𝑉�𝑤𝑤𝑑𝑑

𝑉𝑉�𝑑𝑑
�
Ω

�̂�𝛽𝑤𝑤
𝑝𝑝 +

𝑉𝑉�𝑏𝑏𝑑𝑑

𝑉𝑉�𝑑𝑑
�
1−Ω

�
�̂�𝛽𝐷𝐷𝐷𝐷𝑉𝑉�𝐷𝐷 − �̂�𝛽𝑏𝑏

𝑝𝑝𝑉𝑉�𝑏𝑏
𝑝𝑝

𝑉𝑉�𝑏𝑏𝑑𝑑
�

�����������
𝛽𝛽�𝑏𝑏
𝑑𝑑

 .                (25) 

I use the subscript 𝑤𝑤 to denote within-timing-group terms and the subscript 𝑏𝑏 to denote between-

timing-group terms. 𝑉𝑉�𝑤𝑤𝑑𝑑 is the variance of the within component, �̃�𝑑𝑖𝑖(𝑘𝑘)𝑖𝑖, of the adjusted treatment 

variable. 𝑉𝑉�𝑏𝑏𝑑𝑑 and 𝑉𝑉�𝑏𝑏
𝑝𝑝 are the variance of the between components �̃�𝑑𝑘𝑘𝑖𝑖 and 𝑝𝑝�𝑘𝑘𝑖𝑖. The term Ω measures 

the share of the identifying variation that comes from within-timing-group comparisons. 

The within coefficient, �̂�𝛽𝑤𝑤
𝑝𝑝 ≡ 𝐶𝐶��𝑥𝑥𝑖𝑖𝑖𝑖,𝑑𝑑�𝑖𝑖(𝑘𝑘)𝑖𝑖�

𝑉𝑉�𝑤𝑤𝑑𝑑
, measures the relationship between 𝑦𝑦𝑖𝑖𝑖𝑖 and 

changes over time in �̃�𝑑𝑖𝑖(𝑘𝑘)𝑖𝑖 across units in the same timing group.33 There is no variation in 𝐷𝐷�𝑖𝑖𝑖𝑖 

within timing groups, though, so �̃�𝑑𝑖𝑖(𝑘𝑘)𝑖𝑖 only varies because of predicted treatment status. �̂�𝛽𝑤𝑤
𝑝𝑝  

compares units with the same treatment status but different predicted treatment paths. Adding 

controls therefore introduces a new source of identifying variation—within-group changes in 

𝑿𝑿𝒊𝒊𝒂𝒂—that was not there in the unadjusted version.  

The “between” term in square brackets, �̂�𝛽𝑏𝑏𝑑𝑑 ≡
𝐶𝐶��𝑥𝑥𝑖𝑖𝑖𝑖,𝑑𝑑�𝑘𝑘𝑖𝑖�

𝑉𝑉�𝑏𝑏
𝑑𝑑 , comes from timing-group-by-time-

period variation, just as in Theorem 1. It contains the unadjusted DD coefficient �̂�𝛽𝐷𝐷𝐷𝐷 and subtracts 

�̂�𝛽𝑏𝑏
𝑝𝑝, the two-way fixed effects coefficient from a regression of 𝑦𝑦𝑖𝑖𝑖𝑖 on 𝑝𝑝�𝑘𝑘𝑖𝑖 (averages of the covariate 

index by group and time). Appendix C decomposes �̂�𝛽𝑏𝑏𝑑𝑑 into adjusted 2x2 DDs as in Theorem 1: 

                                                      
33 Because it comes from deviations of 𝑑𝑑𝑖𝑖𝑖𝑖 from group-by-time means, �̂�𝛽𝑤𝑤

𝑝𝑝  is equivalent to regressing 𝑦𝑦𝑖𝑖𝑖𝑖  on unit fixed 
effects, timing-group-by-year fixed effects, and 𝑑𝑑𝑖𝑖𝑖𝑖. 
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                                 �̂�𝛽𝑏𝑏𝑑𝑑 =  �� (𝑛𝑛𝑘𝑘 + 𝑛𝑛ℓ)2
𝑉𝑉�𝑏𝑏,𝑘𝑘ℓ
𝑑𝑑

𝑉𝑉�𝑏𝑏𝑑𝑑
�����������

𝐷𝐷𝑘𝑘ℓ
𝑏𝑏|𝑋𝑋

�
𝑉𝑉�𝑘𝑘ℓ𝐷𝐷 �̂�𝛽𝑘𝑘ℓ2𝑥𝑥2 − 𝑉𝑉�𝑏𝑏,𝑘𝑘ℓ

𝑝𝑝 �̂�𝛽𝑏𝑏,𝑘𝑘ℓ
𝑝𝑝

𝑉𝑉�𝑏𝑏,𝑘𝑘ℓ
𝑑𝑑 �

���������������
𝛽𝛽�𝑏𝑏,𝑘𝑘ℓ
𝑑𝑑

ℓ>𝑘𝑘𝑘𝑘

  .                              (26) 

The variances and coefficients in (26) parallel those in (25) but as the subscripts indicate they come 

from each two-group subsample.34 Controls change the estimate for the two reasons highlighted in 

the Oaxaca-Blinder-Kitagawa expression: they change the weights because 𝑉𝑉�𝑏𝑏,𝑘𝑘ℓ
𝑑𝑑 ≠ 𝑉𝑉�𝑘𝑘𝑎𝑎𝐷𝐷 and they 

adjust each 2x2 estimate by the subsample relationship between 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝑝𝑝�𝑘𝑘𝑖𝑖: 𝑉𝑉�𝑏𝑏,𝑘𝑘ℓ
𝑝𝑝 �̂�𝛽𝑏𝑏,𝑘𝑘ℓ

𝑝𝑝 .35  

 Combining equations (25) and (26) gives the full decomposition for a controlled 

specification: 

                                                 �̂�𝛽𝐷𝐷𝐷𝐷|𝑋𝑋 = Ω�̂�𝛽𝑤𝑤
𝑝𝑝 + (1 − Ω)��𝑠𝑠𝑘𝑘ℓ

𝑏𝑏|𝑋𝑋�̂�𝛽𝑘𝑘ℓ
2𝑥𝑥2|𝑑𝑑

ℓ>𝑘𝑘𝑘𝑘

                                      (27) 

Ω�̂�𝛽𝑤𝑤
𝑝𝑝  is the contribution of within-timing-group variation. (1 − Ω) is the weight on the covariate-

adjusted between terms, �̂�𝛽𝑘𝑘ℓ
2𝑥𝑥2|𝑑𝑑 each of which gets a weight of  𝑠𝑠𝑘𝑘ℓ

𝑏𝑏|𝑋𝑋.  

                                                      
34 Note that (26) decomposes  �̂�𝛽𝑏𝑏

𝐷𝐷𝐷𝐷|𝑋𝑋 by pairs of timing groups but does not break up the timing comparisons into 
terms corresponding to �̂�𝛽𝑘𝑘ℓ

2𝑥𝑥2,𝑘𝑘 and �̂�𝛽𝑘𝑘ℓ
2𝑥𝑥2,ℓ. The control term, 𝑉𝑉�𝑘𝑘ℓ

𝑝𝑝 �̂�𝛽𝑘𝑘ℓ𝑏𝑏 , cannot be easily written as an average across 
overlapping subsets of time (𝑃𝑃𝑇𝑇𝑇𝑇(ℓ) and 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑘𝑘)). 
35 The expression for controlled 2x2 terms in (26) do not come from estimating equation (21) on the subsamples. A 
controlled 2x2 DD—�̂�𝛽𝑏𝑏,𝑘𝑘ℓ

2𝑥𝑥2|𝑋𝑋—would come from adjusting for covariates on that subsample using  predicted treatment 
status 𝑝𝑝�𝑗𝑗𝑖𝑖𝑘𝑘ℓ ≡ 𝚪𝚪𝒌𝒌𝓵𝓵𝑿𝑿𝒌𝒌𝒂𝒂. But �̂�𝛽𝑏𝑏,𝑘𝑘ℓ

𝑑𝑑  adjusts by predicted treatment from the full sample, 𝑝𝑝�𝑗𝑗𝑖𝑖. To see how the two relate, add 
and subtract 𝑝𝑝�𝑗𝑗𝑖𝑖𝑘𝑘ℓ in �̂�𝐶�𝑦𝑦𝑗𝑗𝑖𝑖 ,𝐷𝐷�𝑗𝑗𝑖𝑖 −  𝑝𝑝�𝑗𝑗𝑖𝑖�, the numerator of each �̂�𝛽𝑏𝑏,𝑘𝑘ℓ

𝑑𝑑 : 

                                �̂�𝛽𝑏𝑏,𝑘𝑘ℓ
𝑑𝑑 =

�̂�𝐶�𝑦𝑦𝑗𝑗𝑖𝑖 ,𝐷𝐷�𝑗𝑗𝑖𝑖 −  𝑝𝑝�𝑗𝑗𝑖𝑖𝑘𝑘ℓ� + �̂�𝐶�𝑦𝑦𝑗𝑗𝑖𝑖 , 𝑝𝑝�𝑗𝑗𝑖𝑖𝑘𝑘ℓ − 𝑝𝑝�𝑗𝑗𝑖𝑖�
𝑉𝑉�𝑏𝑏,𝑘𝑘ℓ
𝑑𝑑        , 𝑗𝑗 ∈ 𝑘𝑘, ℓ 

                                                            =
(1 − 𝑇𝑇𝑘𝑘ℓ2 )𝑉𝑉�𝑘𝑘ℓ𝐷𝐷 �̂�𝛽𝑘𝑘ℓ

2𝑥𝑥2|𝑋𝑋 + 𝑉𝑉�𝑏𝑏,𝑘𝑘ℓ
𝑑𝑑𝑝𝑝 �̂�𝛽𝑏𝑏,𝑘𝑘ℓ

𝑑𝑑𝑝𝑝

(1 − 𝑇𝑇𝑘𝑘ℓ2 )𝑉𝑉�𝑘𝑘ℓ𝐷𝐷 + 𝑉𝑉�𝑏𝑏,𝑘𝑘ℓ
𝑑𝑑𝑝𝑝                                                    

The superscript 𝑑𝑑𝑝𝑝 refers to the difference between subsample and full sample predicted treatment, 𝑝𝑝�𝑗𝑗𝑖𝑖𝑘𝑘ℓ − 𝑝𝑝�𝑗𝑗𝑖𝑖. 𝑉𝑉�𝑏𝑏,𝑘𝑘ℓ
𝑑𝑑𝑝𝑝  is 

its variance and �̂�𝛽𝑏𝑏,𝑘𝑘ℓ
𝑑𝑑𝑝𝑝  is the regression coefficient relating it to 𝑦𝑦𝑗𝑗𝑖𝑖. 𝑇𝑇𝑘𝑘ℓ2  comes from the subsample Frisch-Waugh 

regression. The smaller is 𝑇𝑇𝑘𝑘ℓ2  the more weight is put on the subsample controlled term and the closer it is to the 
unadjusted 2x2 DD. When 𝑇𝑇𝑘𝑘ℓ2 = 1, then 𝑝𝑝�𝑗𝑗𝑖𝑖𝑘𝑘ℓ = 𝐷𝐷�𝑗𝑗𝑖𝑖 and the estimate collapses back to �̂�𝛽𝑏𝑏,𝑘𝑘ℓ

𝑑𝑑  as defined in (25). In other 
words, adjusted 2x2 DDs still contribute even with 𝑿𝑿𝒌𝒌𝒂𝒂 and 𝐷𝐷𝑘𝑘𝑖𝑖  are perfectly collinear in the subsample. When 𝚪𝚪𝒌𝒌𝓵𝓵 ≈
𝚪𝚪, then 𝑉𝑉�𝑏𝑏,𝑘𝑘ℓ

𝑑𝑑𝑝𝑝 ≈ 0 and  �̂�𝛽𝑏𝑏,𝑘𝑘ℓ
2𝑥𝑥2|𝑑𝑑 ≈  �̂�𝛽𝑘𝑘ℓ

2𝑥𝑥2|𝑋𝑋. Adding covariates extrapolates the full-sample Frisch-Waugh relationship to 
the pairs and therefore depends strongly on correctly specifying model (21).  
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In the unilateral divorce analysis, I add three covariates: female homicide rates, per-capita 

income, and the welfare participation rate. Column 5 of table 2 reports a controlled DD estimate 

of -2.52 (s.e. = 1.09), almost 20 percent smaller than the unadjusted coefficient. Most of the 

differences comes from the within term. Figure 10 illustrates the within variation for the two 1970 

no-fault divorce states, California and Iowa. The two states have the same values of 𝐷𝐷�𝑖𝑖𝑖𝑖 by 

definition, but panel A shows that predicted treatment is falling slightly in California and rising 

slightly in Iowa. Panel B plots the difference in treatment deviations, �̃�𝑑𝐶𝐶𝑇𝑇,𝑖𝑖 − �̃�𝑑𝑀𝑀𝑇𝑇,𝑖𝑖 =

�𝐷𝐷�𝐶𝐶𝑇𝑇,𝑖𝑖 − 𝑝𝑝�𝐶𝐶𝑇𝑇,𝑖𝑖� − �𝐷𝐷�𝑀𝑀𝑇𝑇,𝑖𝑖 − 𝑝𝑝�𝑀𝑀𝑇𝑇,𝑖𝑖� =  𝑝𝑝�𝑀𝑀𝑇𝑇,𝑖𝑖 − 𝑝𝑝�𝐶𝐶𝑇𝑇,𝑖𝑖, and the difference in suicide rates. The 

regression coefficient relating the two is large and positive (465.9). The full-sample within 

coefficient  �̂�𝛽𝑤𝑤
𝐷𝐷𝐷𝐷|𝑋𝑋 equals 80.01, but the within variance in predicted treatment is small (𝑉𝑉�𝑤𝑤𝑑𝑑 =

0.005). Within-group variation from the covariates therefore changes the DD estimate by 

Ω × �̂�𝛽𝑤𝑤
𝐷𝐷𝐷𝐷|𝑋𝑋 = 80.01 × 0.005 =  0.40, or 73 percent of the difference across specifications.  

Figure 11 illustrates the controlled between term for the 1970 states compared to non-

reform states, �̂�𝛽1970,𝐶𝐶𝑇𝑇𝑃𝑃
2𝑥𝑥2|𝑑𝑑 . Panel A plots the treatment variable and the group-year means of 

predicted treatment status from the full-sample Frisch-Waugh regression. 𝑝𝑝�𝑘𝑘𝑖𝑖 does not change 

much indicating that covariates do not predict treatment very well. In fact the 𝑇𝑇2 from (22) is just 

0.0067. Panel B plots differences in the group-level adjusted treatment variable �̃�𝑑1970,𝑖𝑖 − �̃�𝑑𝐶𝐶𝑇𝑇𝑃𝑃,𝑖𝑖 

and differences in suicide rates. Because the controls do not absorb very much treatment variation, 

the controlled 2x2 term (-22.4) is almost the same as the uncontrolled one (-22.3). These control 

variables do not explain the adoption of no-fault divorce laws very well, but they are correlated 

with suicide rates across states that adopt these laws in the same year.36 

                                                      
36 Appendix C analyzes the theoretical properties of a single controlled 2x2 DD (�̂�𝛽𝑘𝑘𝑗𝑗

2𝑥𝑥2|𝑋𝑋) abstracting from the within-
group term and differences in predicted treatment in the subsample versus full sample. When treatment effects are 
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Appendix D analyzes two common controls strategies: unit-specific linear time trends and 

region-by-year fixed effects. Column 6 of Table 2 shows that unit-specific trends change the 

unilateral divorce estimate to 0.59 (s.e. = 1.35), consistent with the observation that trends over-

control for time-varying treatment effects (Lee and Solon 2011, Meer and West 2013, Neumark, 

Salas, and Wascher 2014). I also propose a two-step strategy that fits linear trends by group in the 

pre-period only, subtracts them from the outcome in all periods, and then estimates an uncontrolled 

regression on the transformed outcome. This pre-trend-adjusted estimator is unaffected by effect 

dynamics and does not change the weights. Column 7 of table 2 shows that adjusting for pre-trends 

only yields an estimate of -6.52 (s.e. = 2.98). The estimator with region-by-year fixed effects 

(column 8 of Table 2) preserves the form of Theorem 1, but essentially applies it within each 

region and then weights the 2x2s from different regions together by sample size. Note that 2x2s 

can drop out in this kind of specification if no region contains a given pair of timing groups.37 

V. CONCLUSION 
Difference-in-differences is perhaps the most widely applicable quasi-experimental research 

design. Its transparency makes it simple to describe, test, interpret, and teach. This paper extends 

all of these advantages from canonical 2x2 DD estimator to general and much more common DD 

estimators with variation in the timing of treatment.  

                                                      
correlated with post-period changes in the covariates, controls absorb part of the treatment effect. This generalizes an 
existing point about unit-specific linear time trends (Lee and Solon 2011). Any control variable could inappropriately 
absorb treatment effects. Moreover, when correctly and completely specified, controls do successfully partial out 
differential trends, but since 𝑿𝑿𝒊𝒊𝒂𝒂 varies period-by-period even within the 𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘) and 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑘𝑘), they also partial out 
period-by-period covariances between 𝑌𝑌0 and predicted treatment status that do not in themselves bias �̂�𝛽𝑘𝑘𝑗𝑗2𝑥𝑥2.  
 
In sum, I find four main ways in which controlling for 𝑿𝑿𝒊𝒊𝒂𝒂 in a regression does not address the bias in DD models. 
First, it introduces within-group comparisons that could not have biased �̂�𝛽𝐷𝐷𝐷𝐷. Second, it extrapolates the full-sample 
predicted treatment variable onto the pairwise components, which can suffer from misspecification. Third, it partials 
out period-by-period covariance between controls and untreated potential outcomes within the pre/post periods that 
could not have biased �̂�𝛽𝐷𝐷𝐷𝐷. Lastly it nets out any part of the treatment effect that is correlated with differential covariate 
paths in the post period. 
37 Appendix D also analyzes triple-difference models and shows that they also have a weighted average form. 
Appendix E briefly discusses treatment variables that turn off.  
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 The two-way fixed effects DD coefficient equals a weighted average of all possible simple 

2x2 DDs that compare one group that changes treatment status to another group that does not. 

Many ways in which the theoretical interpretation of regression DD differs from the canonical 

model stem from the fact that these simple components are weighted together based both on sample 

sizes and the variance of their treatment dummy. This defines the DD estimand, the variance-

weighted average treatment effect on the treated (VWATT), and generalizes the identifying 

assumption on counterfactual outcomes to variance-weighted common trends (VWCT). Moreover, 

because already-treated units act as controls in some 2x2 DD’s, identification of VWATT requires 

an additional identifying assumption of time-invariant treatment effects.  

The DD decomposition theorem also leads to several new tools for practitioners. Graphing 

the 2x2 DDs against their weight displays all the identifying variation in any DD application, and 

summing weights across types of comparisons quantifies “how much” of a given estimate comes 

from different sources of variation. I use the DD decomposition theorem to form a reweighted 

balance test that reflects this identifying variation, is easy to implement, tests fewer restrictions 

than joint balance tests, and shows how large and in what direction any imbalance occurs.  

I suggest several simple methods to learn why estimates differ across alternative 

specifications. The weighted average representation leads to a Oaxaca-Blinder-Kitagawa-style 

decomposition that quantifies how much of the difference in estimates comes from changes in the 

2x2 DD’s, the weights, or both. Plots of the components or the weights across specifications show 

clearly where differences come from and can help researchers understand why their estimates 

changes and whether or not it is a problem. I also provide a new analysis of DD models that include 

covariates and quantify the extent to which identification is driven purely by variation in the 

controls, which is shown to matter in practice.    
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Figure 1. Difference-in-Differences with Variation in Treatment Timing: Three Groups 

 
Notes: The figure plots outcomes in three groups: a control group, 𝑈𝑈, which is never treated; an early treatment group, 
𝑇𝑇, which receives a binary treatment at 𝑡𝑡𝑘𝑘

∗ =
34

100
𝑇𝑇; and a late treatment group, ℓ, which receives the binary treatment 

at 𝑡𝑡ℓ
∗ =

85

100
𝑇𝑇. The x-axis notes the three sub-periods: the pre-period for group 𝑘𝑘, [1, 𝑡𝑡𝑘𝑘∗ − 1], denoted by 𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘); the 

middle period when group 𝑘𝑘 is treated and group ℓ is not, [𝑡𝑡𝑘𝑘∗ , 𝑡𝑡ℓ∗ − 1], denoted by 𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ); and the post-period for 
group ℓ, [𝑡𝑡ℓ∗,𝑇𝑇], denoted by 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ). I set the treatment effect to 10 in group 𝑘𝑘 and 15 in group ℓ.  
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Figure 2. The Four Simple (2x2) Difference-in-Differences Estimates from the Three Group 
Case 

 
Notes: The figure plots the groups and time periods that generate the four simple 2x2 difference-in-difference 
estimates in the case with an early treatment group, a late treatment group, and an untreated group from Figure 1. Each 
panel plots the data structure for one 2x2 DD. Panel A compares early treated units to untreated units (𝛽𝛽�𝑘𝑘𝑈𝑈

𝐷𝐷𝐷𝐷
); panel B 

compares late treated units to untreated units (𝛽𝛽�ℓ𝑈𝑈
𝐷𝐷𝐷𝐷

); panel C compares early treated units to late treated units during 

the late group’s pre-period (𝛽𝛽�𝑘𝑘ℓ
𝐷𝐷𝐷𝐷,𝑘𝑘

); panel D compares late treated units to early treated units during the early group’s 

post-period (𝛽𝛽�𝑘𝑘ℓ
𝐷𝐷𝐷𝐷,ℓ

). The treatment times mean that 𝐷𝐷�𝑘𝑘 = 0.67 and 𝐷𝐷�ℓ = 0.16, so with equal group sizes, the 
decomposition weights on the 2x2 estimate from each panel are 0.365 for panel A, 0.222 for panel B, 0.278 for panel 
C, and 0.135 for panel D.  
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Figure 3. Difference-in-Differences Estimates with Variation in Timing Are Biased When 
Treatment Effects Vary Over Time 

 
Notes: The figure plots a stylized example of a timing-only DD set up with a treatment effect that is a trend-break 
rather than a level shift (see Meer and West 2013). Following section II.A.ii, the trend-break effect equals 𝜙𝜙 ⋅ (𝑡𝑡 −
𝑡𝑡∗ + 1). The top of the figure notes which event-times lie in the 𝑃𝑃𝑇𝑇𝑇𝑇(𝑘𝑘), 𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ), and 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ) periods for each 
unit. The figure also notes the average difference between groups in each of these periods. In the 𝑀𝑀𝑀𝑀𝐷𝐷(𝑘𝑘, ℓ) period, 
outcomes differ by 

𝜙𝜙

2
(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘

∗ + 1) on average. In the 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ) period, however, outcomes had already been growing 

in the early group for 𝑡𝑡ℓ
∗ − 𝑡𝑡𝑘𝑘

∗  periods, and so they differ by 𝜙𝜙(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ + 1) on average. The 2x2 DD that compares 
the later group to the earlier group is biased and, in the linear trend-break case, weakly negative despite a positive and 
growing treatment effect.  
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Figure 4. Weighted Common Trends: The Treatment/Control Weights as a Function of the 
Share of Time Spent Under Treatment 

 
Notes: The figure plots the weights that determine each timing group’s importance in the weighted common trends 
expression in equations (16) and (17). 
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Figure 5. Event-Study and Difference-in-Differences Estimates of the Effect of No-Fault 
Divorce on Female Suicide: Replication of Stevenson and Wolfers (2006) 

 
Notes: The figure plots event-study estimates from the two-way fixed effects regression equation on page 276 and 
plotted in figure 1 of Stevenson and Wolfers (2006), along with the DD coefficient. The specification does not include 
other controls and does not weight by population. Standard errors are robust to heteroskedasticity.  
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Figure 6. Difference-in-Differences Decomposition for Unilateral Divorce and Female 
Suicide 

 
Notes: The figure plots each 2x2 DD components from the decomposition theorem against their weight for the 
unilateral divorce analysis. The open circles are terms in which one timing group acts as the treatment group and the 
pre-1964 reform states act as the control group. The closed triangles are terms in which one timing group acts as the 
treatment group and the non-reform states act as the control group. The x’s are the timing-only terms. The figure notes 
the average DD estimate and total weight on each type of comparison. The two-way fixed effects estimate, -3.08, 
equals the average of the y-axis values weighted by their x-axis value. 
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Figure 7. Weighted Common Trends in the Unilateral Divorce Analysis: The 
Treatment/Control Weights on Each Timing Group 

 
Notes: The figure plots the weights that determine each timing group’s role in the weighted common trends expression. 
These are show in solid triangles and equal the difference between the total weight each treatment timing group 
receives in terms where it is the treatment group (𝑤𝑤𝑘𝑘

𝑇𝑇 ) and terms where it is the control group (𝑤𝑤𝑘𝑘
𝐶𝐶 ): 𝑤𝑤𝑘𝑘𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 . The 
solid circles show the same weights but for versions of each estimator that exclude the untreated (or already-treated) 
units and, therefore, are identified only by treatment timing. The open squares plot each group’s sample share. 
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Figure 8. Testing for Balance in a Difference-in-Differences Estimator with Timing: 
Reweighted Test versus Joint Test 

 
Notes: The figure plots average per-capita income and male/female sex ratio in 1960 for each timing group in the 
unilateral divorce analysis (combining the non-reform and pre-1964 reform states into the group labeled “Pre-64 + 
NRS”). The horizontal lines equal the average of these variables using the weights from figure 6 (𝑤𝑤𝑘𝑘

𝑇𝑇 − 𝑤𝑤𝑘𝑘
𝐶𝐶). Note 

that the 1969 states get more weight as a control group, so they are part of the reweighted control mean. Each panel 
reports the F-statistic and p-value from a joint test of equality across the means, and the reweighted difference, 
standard error, and p-value from the re-weighted balance test. The top of the figure reports χ2(𝑑𝑑𝑓𝑓) test-statistics for 
both covariates estimated using seemingly unrelated regressions.  
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Figure 9. Comparison of 2x2 DD Components and Decomposition Weights with and 
without Population Weights 

 
Notes: Panel A plots the 2x2 DD components from two-way fixed effects estimates that use population weights (y-
axis) and do not (x-axis). The size of each point is proportional to its weight in an OLS version of equation (7). WLS 
estimates are much smaller than OLS estimates, and this figure shows that the source of this discrepancy is the 1970 
no-fault divorce states, which include only Iowa and California. Weighting puts much more emphasis on California 
and, therefore, every 2x2 DD component involving the 1970 states. Dropping California changes yields an OLS 
estimate of -3.32 and a WLS estimate of -1.43.  
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Figure 10. Adding Controls Creates Within-Timing-Group Comparisons: An Example 
with the 1970 No-Fault Divorce States 

 
Notes: Panel A plots the treatment dummy and fitted values from the full-sample Frisch-Waugh regression (predicted 
treatment status, 𝑝𝑝�𝑖𝑖𝑖𝑖) for the 1970 states, California and Iowa. Panel B plots the difference in adjusted treatment 
variable, 𝐷𝐷�𝑖𝑖𝑖𝑖 − 𝑝𝑝�𝑖𝑖𝑖𝑖, between California and Iowa and the same difference in female suicide rates. Both fall over time 
and are highly correlated. The coefficient from a regression of the difference in suicide rates on �𝐷𝐷�1970,𝑖𝑖 − 𝑝𝑝�𝐶𝐶𝑇𝑇,𝑖𝑖� −
�𝐷𝐷�1970,𝑖𝑖 − 𝑝𝑝�𝑀𝑀𝑇𝑇,𝑖𝑖� equals 465.9. This is the part of the within term in (22) that comes from the 1970 group.  
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Figure 11. Adding Controls Adjusts Between-Timing-Group Comparisons: An Example 
with the 1970 No-Fault Divorce States Compared to Non-Reform States 

 
Notes: Panel A plots the treatment dummy and group-year averages of fitted values from the full-sample Frisch-
Waugh regression (𝑝𝑝�𝑘𝑘𝑖𝑖) for the 1970 states and non-reform states. Panel B plots the difference in adjusted treatment 
variable, �𝐷𝐷�1970,𝑖𝑖 − 𝑝𝑝�1970,𝑖𝑖� − �𝐷𝐷�𝐶𝐶𝑇𝑇𝑃𝑃,𝑖𝑖 − 𝑝𝑝�𝐶𝐶𝑇𝑇𝑃𝑃,𝑖𝑖�, between the two groups and the same difference in female suicide 
rates. The covariates do not adjust the treatment dummy very much, so the coefficient is -22.4. This is the part of the 
between term in (22) that comes from the 1970 versus non-reform comparison.   
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Figure 12. Comparison of 2x2 DD Components and Decomposition Weights with and 
without Controls 

 
Notes: Panel A plots the two-group DDs from a regression that controls for per-capita income, female homicide rates, 
and welfare participation rates (y-axis) against those from the uncontrolled specification (x-axis). The size of each 
point is proportional to its weight in the controlled regression. Controls only change the estimate slightly, but almost 
all of this comes from the within-term: the comparisons between states in the same timing group (treatment status) but 
different predicted treatment status. Panel B is the same except that it plots the weights.  
  

w/ controls = -2.52

w/o controls = -3.08

within component = 80.01*0.0051
                              = 0.41
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Table 1. The No-Fault Divorce Rollout: Treatment Times, Group Sizes, and Treatment 
Shares 

 
No-Fault Divorce  
Year (𝑡𝑡𝑘𝑘∗)  

Number of 
States 

Share of  
States  (𝑛𝑛𝑘𝑘) 

Treatment Share 
(𝐷𝐷�𝑘𝑘) 

Non-Reform States 5 0.10 . 
Pre-1964 Reform States 8 0.16 . 
1969 2 0.04 0.85 
1970 2 0.04 0.82 
1971 7 0.14 0.79 
1972 3 0.06 0.76 
1973 10 0.20 0.73 
1974 3 0.06 0.70 
1975 2 0.04 0.67 
1976 1 0.02 0.64 
1977 3 0.06 0.61 
1980 1 0.02 0.52 
1984 1 0.02 0.39 
1985 1 0.02 0.36 

 
Notes: The table lists the dates of no-fault divorce reforms from Stevenson and Wolfers (2006), the number and share 
of states that adopt in each year, and the share of periods each treatment timing group spends treated in the estimation 
sample from 1964-1996.  
  



Table 2. DD Estimates of the Effect of Unilateral Divorce Analysis on Female Suicide: Alternative Specifications 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 

Baseline 
No 

Untreated 
States 

WLS 
Propensity 

Score 
Weighting 

 
Controls 

Unit-
Specific 
Trends 

Group-
Specific 

Pre-
Trends 

Region-
by-Year 
Fixed 

Effects 

Unilateral Divorce -3.08 2.42 -0.35 1.04 -2.52 0.59 -6.52 -1.16 
 [1.27] [1.81] [1.97] [1.78] [1.09] [1.35] [2.98] [1.37] 
Difference from 
baseline 
specification 

 5.50 2.73 4.12 0.56 3.67 -3.44 1.92 

Share due to:         

2x2 DDs  0 0.52 1 0.22 0.90 1 0.37 
Weights  1 0.39 0 0.05 0.47 0 0.76 

Interaction  0 0.09 0 <0.01 -0.36 0 -0.13 
Within Term  0 0 0 0.73 0 0 0 

Notes: The table presents DD estimates from the alternative specifications discussed in section III. Column (1) is the two-way fixed effects estimate from equation 
(2). Column (2) drops the pre-1964 reform and non-reform states. Column (3) weights by state adult populations in 1964. Column (4) weights by the inverse 
propensity score estimated from a probit model that contains the sex ratio, per-capita income, the general fertility rate, and the infant mortality rate all measured in 
1960. Column (5) controls for per-capita income, female homicide rates, and per-capita welfare caseloads. Column (6) includes state-specific linear time trends. 
Column (7) comes from a two-step procedure that first estimates group-specific trends from 1964-1968, subtracts them from the suicide rate, and estimates equation 
(2) on the transformed outcome variable. Column (8) includes region-by-year fixed effects. Below the standard errors I show the difference between each estimate 
and the baseline result, an the last three rows show the share of this difference that comes from changes in the 2x2 DD’s, the weights, or their interaction as shown 
in equation (18).  

 



VI. REFERENCES 
Abadie, Alberto. 2005. "Semiparametric Difference-in-Differences Estimators."  The Review of Economic Studies 

72 (1):1-19. 
Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2010. "Synthetic Control Methods for Comparative Case 

Studies: Estimating the Effect of California’s Tobacco Control Program."  Journal of the American 
Statistical Association 105 (490):493-505. doi: 10.1198/jasa.2009.ap08746. 

Abraham, Sarah, and Liyang Sun. 2018. "Estimating Dynamic Treatment Effects in Event Studies with 
Heterogeneous Treatment Effects."  Working Paper. 

Allcott, Hunt. 2015. "Site Selection Bias in Program Evaluation."  The Quarterly Journal of Economics 130 
(3):1117-1165. doi: 10.1093/qje/qjv015. 

Almond, Douglas, Hilary W. Hoynes, and Diane Whitmore Schanzenbach. 2011. "Inside the War On Poverty: The 
Impact of Food Stamps on Birth Outcomes."  The Review of Economics and Statistics 93 (2):387-403. doi: 
10.2307/23015943. 

Angrist, Joshua D. 1991. "Grouped-data estimation and testing in simple labor-supply models."  Journal of 
Econometrics 47 (2):243-266. doi: https://doi.org/10.1016/0304-4076(91)90101-I. 

Angrist, Joshua D., and Alan B. Krueger. 1999. "Chapter 23 - Empirical Strategies in Labor Economics." In 
Handbook of Labor Economics, edited by Orley C. Ashenfelter and David Card, 1277-1366. Elsevier. 

Angrist, Joshua David, and Jörn-Steffen Pischke. 2009. Mostly harmless econometrics : an empiricist's companion. 
Princeton: Princeton University Press. 

Angrist, Joshua David, and Jörn-Steffen Pischke. 2015. Mastering 'metrics : the path from cause to effect. Princeton 
; Oxford: Princeton University Press. 

Athey, Susan, and Guido W. Imbens. 2006. "Identification and Inference in Nonlinear Difference-in-Differences 
Models."  Econometrica 74 (2):431-497. 

Athey, Susan, and Guido W. Imbens. 2018. "Design-based Analysis in Difference-in-Differences Settings with 
Staggered Adoption."  Working Paper. 

Bailey, Martha J., and Andrew Goodman-Bacon. 2015. "The War on Poverty's Experiment in Public Medicine: 
Community Health Centers and the Mortality of Older Americans."  American Economic Review 105 
(3):1067-1104. 

Ben-Michael, Eli, Avi Feller, and Jesse Rothstein. 2019. "Synthetic Controls and Weighted Event Studies with 
Staggered Adoption."  Working Paper. 

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2004. "How Much Should We Trust Differences-In-
Differences Estimates?"  The Quarterly Journal of Economics 119 (1):249-275. 

Bilinski, Alyssa, and Laura Hatfield. 2019. "Nothing to see here? Non-inferiority approaches to parallel trends and 
other model assumptions."  Working Paper. 

Bitler, Marianne P., Jonah B. Gelbach, and Hilary W. Hoynes. 2003. "Some Evidence on Race, Welfare Reform, 
and Household Income."  The American Economic Review 93 (2):293-298. doi: 10.2307/3132242. 

Blinder, Alan S. 1973. "Wage Discrimination: Reduced Form and Structural Estimates."  The Journal of Human 
Resources 8 (4):436-455. doi: 10.2307/144855. 

Borusyak, Kirill, and Xavier Jaravel. 2017. "Revisiting Event Study Designs."  Harvard University Working Paper. 
Callaway, Brantly, Tong Li, and Tatsushi Oka. forthcoming. "Quantile Treatment Effects in Difference in 

Differences Models under Dependence Restrictions and with only Two Time Periods."  Journal of 
Econometrics. 

Callaway, Brantly, and Pedro Sant'Anna. 2018. "Difference-in-Differences With Multiple Time Periods and an 
Application on the Minimum Wage and Employment."  Working Paper. 

Cameron, Adrian Colin, and P. K. Trivedi. 2005. Microeconometrics : methods and applications. Cambridge ; New 
York: Cambridge University Press. 

Chernozhukov, Victor, Iván Fernández‐Val, Jinyong Hahn, and Whitney Newey. 2013. "Average and Quantile 
Effects in Nonseparable Panel Models."  Econometrica 81 (2):535-580. doi: 10.3982/ECTA8405. 

Chyn, Eric. forthcoming. "Moved to Opportunity: The Long-Run Effect of Public Housing Demolition on Labor 
Market Outcomes of Children."  American Economic Review. 

de Chaisemartin, C., and X. D’HaultfŒuille. 2018. "Fuzzy Differences-in-Differences."  The Review of Economic 
Studies 85 (2):999-1028. doi: 10.1093/restud/rdx049. 

de Chaisemartin, C.;, and X. D’HaultfŒuille. forthcoming. "Two-way fixed effects estimators with heterogeneous 
treatment effects."  American Economic Review. 

https://doi.org/10.1016/0304-4076(91)90101-I


1 
 

de Chaisemartin, Clement, and Xavier D’Haultfoeuille. 2018. "Two-Way Fixed Effects Estimators with 
Heterogeneous Treatment Effects."  Working Paper. 

Deaton, Angus. 1997. The Analysis of Household Surveys : a Microeconometric Approach to Development Policy. 
Baltimore, MD: Johns Hopkins University Press. 

Deshpande, Manasi, and Yue Li. 2017. "Who Is Screened Out? Application Costs and the Targeting of Disability 
Programs."  National Bureau of Economic Research Working Paper Series No. 23472. doi: 
10.3386/w23472. 

Fadlon, Itzik, and Torben Heien Nielsen. 2015. "Family Labor Supply Responses to Severe Health Shocks."  
National Bureau of Economic Research Working Paper Series No. 21352. doi: 10.3386/w21352. 

Freyaldenhoven, Simon, Christian Hansen, and Jesse M. Shapiro. 2018. "Pre-event Trends in the Panel Event-study 
Design."  National Bureau of Economic Research Working Paper Series No. 24565. doi: 10.3386/w24565. 

Frisch, Ragnar, and Frederick V. Waugh. 1933. "Partial Time Regressions as Compared with Individual Trends."  
Econometrica 1 (4):387-401. doi: 10.2307/1907330. 

Gibbons, Charles, E., Juan Carlos Suárez Serrato, and Michael Urbancic, B. 2018. Broken or Fixed Effects? In 
Journal of Econometric Methods. 

Goodman-Bacon, Andrew, Thomas Goldring, and Austin Nichols. 2019. "bacondecomp: Stata module for 
Decomposing difference-in-differences estimation with variation in treatment timing."  Stata Command. 

Goodman, Joshua. 2017. "The Labor of Division: Returns to Compulsory High School Math Coursework."  
National Bureau of Economic Research Working Paper Series No. 23063. doi: 10.3386/w23063. 

Grosz, Michael, Douglas L. Miller, and Na'ama Shenhav. 2018. "All In the Family: Assessing the External Validity 
of Family Fixed Effects Estimates and the Long Term Impact of Head Start."  Working Paper. 

Haines, Michael R., and ICPSR. 2010. Historical, Demographic, Economic, and Social Data: The United States, 
1790-2002. ICPSR [distributor]. 

Heckman, James J., Robert J. Lalonde, and Jeffrey A. Smith. 1999. "Chapter 31 - The Economics and Econometrics 
of Active Labor Market Programs." In Handbook of Labor Economics, edited by Orley C. Ashenfelter and 
David Card, 1865-2097. Elsevier. 

Holland, Paul W. 1986. "Statistics and Causal Inference."  Journal of the American Statistical Association 81 
(396):945-960. doi: 10.2307/2289064. 

Imai, Kosuke, In Song Kim, and Erik Wang. 2018. "Matching Methods for Causal Inference with Time-Series 
Cross-Section Data."  Working Paper. 

Imbens, Guido W., and Joshua D. Angrist. 1994. "Identification and Estimation of Local Average Treatment 
Effects."  Econometrica 62 (2):467-475. doi: 10.2307/2951620. 

Jacobson, Louis S., Robert J. LaLonde, and Daniel G. Sullivan. 1993. "Earnings Losses of Displaced Workers."  The 
American Economic Review 83 (4):685-709. doi: 10.2307/2117574. 

Joseph Hotz, V., Guido W. Imbens, and Julie H. Mortimer. 2005. "Predicting the efficacy of future training 
programs using past experiences at other locations."  Journal of Econometrics 125 (1):241-270. doi: 
https://doi.org/10.1016/j.jeconom.2004.04.009. 

Kasy, Maximilian. 2018. "Optimal taxation and insurance using machine learning — Sufficient statistics and 
beyond."  Journal of Public Economics 167:205-219. doi: https://doi.org/10.1016/j.jpubeco.2018.09.002. 

Kitagawa, Evelyn M. 1955. "Components of a Difference Between Two Rates."  Journal of the American Statistical 
Association 50 (272):1168-1194. doi: 10.2307/2281213. 

Krolikowski, Pawel. 2017. "Choosing a Control Group for Displaced Workers."  ILR Review:0019793917743707. 
doi: 10.1177/0019793917743707. 

Lee, David S., and Thomas Lemieux. 2010. "Regression Discontinuity Designs in Economics."  Journal of 
Economic Literature 48 (2):281-355. 

Lee, Jin Young, and Gary Solon. 2011. "The Fragility of Estimated Effects of Unilateral Divorce Laws on Divorce 
Rates."  National Bureau of Economic Research Working Paper Series No. 16773. 

Malkova, Olga. 2017. "Can Maternity Benefits Have Long-Term Effects on Childbearing? Evidence From Soviet 
Russia."  The Review of Economics and Statistics. doi: 10.1162/REST_a_00713. 

Meer, Jonathan, and Jeremy West. 2013. "Effects of the Minimum Wage on Employment Dynamics."  National 
Bureau of Economic Research Working Paper Series No. 19262. doi: 10.3386/w19262. 

Meyer, Bruce D. 1995. "Natural and Quasi-Experiments in Economics."  Journal of Business & Economic Statistics 
13 (2):151-161. doi: 10.2307/1392369. 

Neumark, David, J. M. Ian Salas, and William Wascher. 2014. "Revisiting the Minimum Wage—Employment 
Debate: Throwing Out the Baby with the Bathwater?"  ILR Review 67 (3_suppl):608-648. doi: 
10.1177/00197939140670S307. 

https://doi.org/10.1016/j.jeconom.2004.04.009
https://doi.org/10.1016/j.jpubeco.2018.09.002


2 
 

Oaxaca, Ronald. 1973. "Male-Female Wage Differentials in Urban Labor Markets."  International Economic Review 
14 (3):693-709. doi: 10.2307/2525981. 

Oster, Emily. 2016. "Unobservable Selection and Coefficient Stability: Theory and Evidence."  Journal of Business 
& Economic Statistics:1-18. doi: 10.1080/07350015.2016.1227711. 

Pei, Zhuan, Jörn-Steffen Pischke, and Hannes Schwandt. 2017. "Poorly Measured Confounders are More Useful on 
the Left Than on the Right."  National Bureau of Economic Research Working Paper Series No. 23232. 
doi: 10.3386/w23232. 

Perron, Pierre. 2006. "Dealing with Structural Breaks."  Working Paper. 
Rambachan, Ashesh, and Jonathan Roth. 2019. "An Honest Approach to Parallel Trends."  Working Paper. 
Rubin, Donald B. 1974. "Estimating causal effects of treatments in randomized and nonrandomized studies."  

Journal of Educational Psychology 66 (5):688-701. doi: 10.1037/h0037350. 
Sant'Anna, Pedro, and Jun Zhao. 2018. "Doubly Robust Difference-in-Differences Estimators."  Working Paper. 
Shore-Sheppard, Lara D. . 2009. "Stemming the Tide? The Effect of Expanding Medicaid Eligibility On Health 

Insurance Coverage."  The B.E. Journal of Economic Analysis & Policy 8 (2). 
Sloczynski, Tymon. 2017. "A General Weighted Average Represetnation of the Ordinary and Two-Stage Least 

Squares Estimands."  Working Paper. 
Snow, John. 1855. On the Mode of Communication of Cholera. Edited by John Churchill. Second ed. London. 
Solon, Gary, Steven J. Haider, and Jeffrey M. Wooldridge. 2015. "What Are We Weighting For?"  Journal of 

Human Resources 50 (2):301-316. 
Stevenson, Betsey, and Justin Wolfers. 2006. "Bargaining in the Shadow of the Law: Divorce Laws and Family 

Distress."  The Quarterly Journal of Economics 121 (1):267-288. 
Strezhnev, Anton. 2018. "Semiparametric Weighting Estimators for Multi-Period Difference-in-Differences 

Designs."  Working Paper. 
Surveillance, Epidemiology, and End Results (SEER). 2013. Surveillance, Epidemiology, and End Results (SEER) 

Program Populations (1969-2011). edited by DCCPS National Cancer Institute, Surveillance Research 
Program, Surveillance Systems Branch. 

Walters, Christopher R. forthcoming. "The Demand for Effective Charter Schools."  Journal of Political Economy. 
Wolfers, Justin. 2006. "Did Unilateral Divorce Laws Raise Divorce Rates? A Reconciliation and New Results."  

American Economic Review 96 (5):1802-1820. 
Wooldridge, Jeffrey M. 2001. "Asymptotic Properties of Weighted M-Estimators for Standard Stratified Samples."  

Econometric Theory 17 (2):451-470. 
Wooldridge, Jeffrey M. 2005. "Fixed-Effects and Related Estimators for Correlated Random-Coefficient and 

Treatment-Effect Panel Data Models."  The Review of Economics and Statistics 87 (2):385-390. 
Wooldridge, Jeffrey M. 2010. Econometric analysis of cross section and panel data. 2nd ed. Cambridge, Mass.: 

MIT Press. 

 
 

 


	I. The Difference-in-Differences Decomposition Theorem
	A. Alternative Decompositions

	II. Theory: What parameter does DD identify and under what assumptions?
	A. Interpreting the DD Estimand
	i. Effects that vary across units but not over time
	ii. Effects that vary over time but not across units

	B. What is the identifying assumption and how should we test it?

	III. DD Decomposition in Practice: Unilateral Divorce and Female Suicide
	A. Describing the design
	B. Testing the design

	IV. Alternative Specifications
	A. Weighting
	B. DD with Controls

	V. Conclusion
	VI. References

